10,4 или 13 га в день
Объяснение:
Пусть x - Обрабатываемая площадь посевов в день (ед. измерения - га/день), тогда по норме он должен выполнить заказ ровно за 52/x дней, но известно, что на предыдущий день (т.е на ), он обработал от 48 до 54,6 га, со скоростью, превышающей норму на 3 (т.е скорость равна x+3) итого получаем
поработаем сначала с выражением слева:
52/x - 1 = (52-x)/x, т.е. в Левых частях получается выражение (52-x)(x+3)/x
Раскроем скобки: (-x^2 + 49x + 156)/x
так как x > 0 (Действительно, механизатор не может обрабатывать в отрицательную площадь земли), то можем домножить на x (Обращу внимание, что домножать на x можно ТОЛЬКО если известно, что он только одного знака (в силу одз или условий задачи), причем если x всегда < 0, то нужно еще и поменять знак неравенства):
Решим неравенства по отдельности:
1) -x^2 + x + 156 >= 0 2) -x^2-5,6 + 156 <= 0 |*5
D = 1 + 624 = 625 (25*25) -5x^2-28x+780 <= 0
x1 = (-1 - 25)/-2 = 13 D =784 + 15600=16384 (128*128)
x2 = (-1+25)/-2 = -12 x1 = (28-128)/-10 = 10
Далее используя метод x2 = (28+128)/-10 = -15,6
интервалов или свойства Далее используя метод
параболы получаем: интервалов или св-ва параболы:
-12 <= x <= 13 x <= -15,6 или x >= 10
x > 0, следовательно x > 0 следовательно
x <= 13 x >= 10
Нужно было сделать заказ за целое число дней, это означает что 52/x - целое число. Максимально возможное значение 52/x при x=10 52/10=5,2, Минимальное при x=13, 52/13 = 4 т.е. заказ выполнен при норме за 4 или 5 дней, если за 4, то скорость при норме 52/4 = 13 га в день, если за 5 дней, то 52/5 = 10,4 га в день
Объяснение:
у=х-4 х€[-1; 7]
k=1>0 ===> y(x) - возрастающая
функция.
а1.
Наименьшее значение функция
принимает в левой крайней точ
ке заданного отрезка х=-1 :
у(-1)=-1-4=-5
а2.
Наибольшее значение функция
принимает в правой крайне точ
ке заданного отрезка х=7 :
у(7)=7-4=3
б1.
Если у=0, то:
0=х-4
-х=-4
х=4
Значение у=0 функция достига
ет в точке сабсциссой, равной 4.
б2.
х-4<0
х<4
Вывод:
функция принимает отрицтаель
ные значения у<0 при
х€(-оо; 4).
Строим график функции
у=х-4
Составим и заполним таб
личку: достаточно двух точек,
так как графиком линейной
функции является прямая ли
ния.
х -1 3
у -5 -1
Поделитесь своими знаниями, ответьте на вопрос:
Сравните числа а и b, если 1) а-21>b-21 2) 5а<5b Можно поскорей
1) а-21 > b-21
а-21 +21 > b-21 +21
а-0 > b-0
а > b
2) 5а < 5b
5а : 5 < 5b : 5
1а < 1b
а < b