d111180
?>

Функции y=кореньx найдите значение пере- менной: 1) у при х, равном 0, 5; 1, 5; 2, 5; 2) х при у, равном 0, 5; 1, 5; 2, 5.​

Алгебра

Ответы

valerii-borisovich550
Решение уравнения будем искать в виде y=e^{\beta\cdot x}.

Составим характеристическое уравнение.
 \beta^2-3\beta=0\\ \beta_1=0;\\ \beta_2=3;

Фундаментальную систему решений функций:
y_1=1\\ y_2=e^{3x}

Общее решение однородного уравнения:
 y_{*}=y_1+y_2=C_1\cdot e^{3x}+C_2

Теперь рассмотрим прафую часть диф. уравнения:
 f(x)=3e^{3x}

найдем частные решения.
Правая часть имеет вид уравнения
P(x)=e^{\alpha x}(R(x)\cos(\gamma x)+L(x)\sin(\gamma x)), где R(x) и S(x) - полиномы, которое имеет частное решение.

y=x^ze^{\alpha x}(P(x)\cos(\gamma x)+S(x)\sin (\gamma x)), где z -кратность корня \alpha+\gamma i

У нас R(x) = 3; L(x) = 0; \alpha=3;\,\, \gamma =0

Число \alpha + \gamma i=3 является корнем характеристического уравнения кратности z=1

Тогда уравнение имеет частное решение вида:
 y=x(Ae^{3x})
Находим 2 производные, получим
y'=3Ax3e^{3x}+Ae^{3x}\\ y''=3Ae^{3x}(3x+2)

И подставим эти производные в исходное диф. уравнения
y''-3y'=3e^{3x}\\ 3Ae^{3x}=3e^{3x}\\ A=1

Частное решение имеет вид: y_*=xe^{3x}

Общее решение диф. уравнения:
  y=C_1e^{3x}+C_2+xe^{3x}
Suralevartem
Произведение двух наибольших = 225
Чтобы получить 225, можно перемножить такие разные натуральные числа:
225*1, 75*3, 45*5, 25*9.

Произведение двух наименьших = 16
Чтобы получить 16, можно перемножить такие разные натуральные числа:
16*1, 8*2.

Т.к. есть 2 самых меньших и 2 самых больших, то меньшие не могут быть больше больших (очевидно же). Поэтому есть лишь вариант 25,9 и 8,2. В любых других случаях одно из больших чисел меньше одного из меньших чисел, чего не может быть.
Сумма всех чисел = 25+9+8+2 = 44 

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Функции y=кореньx найдите значение пере- менной: 1) у при х, равном 0, 5; 1, 5; 2, 5; 2) х при у, равном 0, 5; 1, 5; 2, 5.​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

martinson
Sergeevich-Novikov
guujuu
delonghisochi
Dmitriy2211104
zakaz
koldunovan
Lukina
julia3594265843
Kondratev Ruzavina22
zdv686857
Kazantsevv_kostya
kulinarprotv
barabanoveugeny
rinan2013