Оба графика функций - параболы и у обоих ветви этих парабол направлены вверх, значит, в обоих случаях наименьшее значение функций достигается в вершине параболы. Найдем вершины каждой из них. из формулы ах²+bx+c B(x; y) x(B) = -b / 2a
1) у = х² - 2х + 7 х(В) = 2/2 = 1 у(В) = 1² - 2* 1 + 7 = 1-2+7 = 6 В(1; 6) - вершина => у(1) = 6 - наименьшее значение данной функции у = х² - 2х + 7
2) у = х² - 7 х + 32,5 х(В) = 7/2 = 3,5 у(В) = 3,5² - 7 * 3,5 + 32,5 = 12,25 - 24,5 + 32,5 = 20,25 В(3,5; 20,25) - вершина => у(3,5)=20,25 - наименьшее значение функции у = х² - 7 х + 32,5
kseniyavaganova
10.02.2020
ответ. В каждом размере либо левых и правых поровну, либо каких-то больше. Если левых и правых поровну, то их по 50 – вот мы и нашли 50 годных пар. Пусть в каждом размере или левых или правых больше. Можно считать, что в двух размерах больше левых, а в еще одном больше правых. (Во всех трех размерах левых быть больше не может, так как всего левых и правых сапог поровну). Введем обозначения, пусть в первых двух размерах правых A и B, а левых тогда 100-A и 100-B. В третьем размере левых C, а правых 100-С. Так как в первых двух размерах правых меньше, то там можно найти соответственно A и B пар, а в третьем размере левых меньше, значит там C годных пар. Мы еще не воспользовались условием, что всего 150 правых сапог. Это условие означает, что A+B+(100-C)=150, Откуда A+B=50+C50. Значит, всего пар годных сапог будет A+B+CA+B50.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Скорость тела задана уравнением v(t)= 6t^2+1. Найти закон движения тела, если за время t= 3, тело путь S= 60 м.
Найдем вершины каждой из них.
из формулы ах²+bx+c
B(x; y)
x(B) = -b / 2a
1) у = х² - 2х + 7
х(В) = 2/2 = 1
у(В) = 1² - 2* 1 + 7 = 1-2+7 = 6
В(1; 6) - вершина
=> у(1) = 6 - наименьшее значение данной функции у = х² - 2х + 7
2) у = х² - 7 х + 32,5
х(В) = 7/2 = 3,5
у(В) = 3,5² - 7 * 3,5 + 32,5 = 12,25 - 24,5 + 32,5 = 20,25
В(3,5; 20,25) - вершина
=> у(3,5)=20,25 - наименьшее значение функции у = х² - 7 х + 32,5