YekaterinaAbinskov
?>

Доказать равенство Дано, что f(x)=3x2−x+6 . Верно ли, что f(sinx)=9−3cos2x−sinx ? (Приведи доказательство.)

Алгебра

Ответы

Бочкарева Горохова1652

 F(x)=3x^2 + 2x -1

Введем подстановку: вместо х подставим sinx

f(sinx)=3sin^2 x+2sinx -1=3(1-cos^2 x)+2sinx-cos^2 x-sin^2 x=3-3cos^2 x+2sinx -cos^2 x - sin^2 x=2+cos^2 x+sin^2 x+2sinx-cos^2 x-sin^2 x=2sinx-3cos^2 x +2

Пояснения: Сначала по формуле (1=sin^2 x+ cos^2 x) заменили квадрат синуса, на (1-cos^2 x). Затем раскрыли скобки. После число 3 представили в виде (2+1) и заменили 1 на sin^2 x+ cos^2 x по формуле. Потом привели подобные слагаемые и получили ответ.

списано из братеной тетрадки XD

iordanekaterina
Для нахождения экстремумов (в т.ч. минимумов), нужно взять производную, приравнять её нулю и решить. Полученные значения проверить на максимум и минимум.

y=x-ln(x+6)+3
Область допустимых значений x >-6

y'=(x-ln(x+6)+3)'=1- \frac{1}{x+6} =0 \\ \\ \frac{1}{x+6} =1 \\ \\ x+6=1 \\ \\ x=-5

Имеем одно экстремальное значение х = -5. Если производная в этой точке меняет знак с минуса на плюс, то это минимум. Для практической проверки следует подставить в выражение производной значение икс несколько меньше (-5) и несколько больше (-5). Обычно следует выбирать такие значение, чтобы легче считалось.

Слева, или меньше (-5) выбираем х = -5,5 (в данном случае нельзя брать меньше минус 6, т.к. выйдем из ОДЗ).
y'(-5,5) = 1- \frac{1}{-5,5+6} =1- \frac{1}{0,5} =1-2=-1\ \textless \ 0

Справа, или больше (-5) выбираем х = 0.
y'(0) = 1- \frac{1}{0+6} =1- \frac{1}{6} = \frac{5}{6} \ \textgreater \ 0

Итак, мы видим, что производная (слева направо) меняет свой знак с минуса на плюс. Это означает, что найденный экстремум является минимум. Если было наоборот, то был бы максимум.

x_{min}=-5 \\ \\ y(-5)=x-ln(x+6)+3=-5-ln(-5+6)+3=-5-ln1+3=-2
lobanosky162
Task/27145483

Количество целых решений неравенства 7/(x² -5x+6) +9/(x-3) < -1, принадлежащих отрезку [-6;0) равно:

* * *  x²+px + q =(x -x₁)(x - x₂)  * * *
7/(x² -5x+6) +9/(x-3) < -1⇔7/(x -2)(x-3) +9/(x-3) +1 < 0⇔
(7 + 9x-18  + x² -5x+6 ) / (x -2)(x-3) < 0 ⇔( x² +4x- 5) / (x -2)(x-3) < 0 ⇔
( x +5)(x- 1) / (x -2)(x-3) < 0 ⇔ ( x +5)(x -1)(x -2)(x-3) < 0
       "+"                  " - "              "+"                 "-"                  "+"     
(-5) (1) (2) ( 3)
x ∈( - 5; 1) ∪ (2 ; 3) 
Количество целых решений неравенства , принадлежащих отрезку [-6;0) равно: (-4) +(-3) +(-2) +(-1)  = -10 .

ответ: -10.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Доказать равенство Дано, что f(x)=3x2−x+6 . Верно ли, что f(sinx)=9−3cos2x−sinx ? (Приведи доказательство.)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

zazaza74
zdv686857
ВасилийКлимова1695
Ямпольский
panasenko68
ktv665
kristal1
ElenaSkvortsova2
ognevasv555
household193
Andrei
Шабунина-Евгения1883
masha812
Postnikova-StreltsovaKyulbyakova
Kuzina Sergeevna