Serezhkin
?>

Вычислите площадь криволинейной трапеции ограниченной линиями 1)y=x^3+3, y=0, x=-1, x=12)y=3/sin^2x, y=0, x=п/6, x=3п/4

Алгебра

Ответы

daarisgoy

\int_{-1}^1 (x^3 + 3)\; dx = (\frac{x^4}{4} + 3x)|_{-1}^1 =

= \frac{1}{4} + 3 - ( \frac{(-1)^4}{4} + 3\cdot (-1)) =

= \frac{1}{4} + 3 - \frac{1}{4} + 3 = 6

druzhbamagazin2457

1.

а) 2(1-х)≥5х-(3х+2)  

2-2х≥5х-3х-2  

-2х-5х+3х≥-2-2  

-4х≥-4  

х≤1  

(-∞; 1]

б) 3x^2+5X-8=0  

D= b^2-4ac= 5^2-4*3*(-8)= 121  

X1= (-5-11)/6= -8/3  

X2= (-5+11)/6=1

4.  

4х+6(2-x)>=10  

4x+12-6x>=10  

2x<=2  

x<=1 - не больше часа

 

                              Вариант 2

1.

а) 7x+3>5x-20+1  

7x-5x>-20-3+1  

2x>-22/2  

x>-11

б) 2x2-13x-7=0  

D=(-13)^2 -4*2*(-7)=169+56=225=15^2  

X1=13+15/4=7  

X2=13-15/4=-0,5

4.  

2х+3(60-х)>140  

2x-3x>140-180  

x<40- работа ученика меньше 40 мин  

40*2=80 дет - меньше 80 деталей

     

dannytr

task/29816879  решить  cos²x +3sinx - 3 =0 ;   x ∈ [-2π ; 3π]

решение. cos²x +3sinx-3 =0⇔1 -sin²x +3sinx-3 =0 ⇔sin²x-3sinx+2 =0                                                             [ sinx =2 ; sinx =1 .    но  sinx =2 >  1→ посторонний корень ;

sinx = 1  ⇒ x =  π/2 +2πn , n ∈ ℤ    при n = - 1 ; 0 ; 1  получаем

ответ.   - 3π/2 ; π/2 ;  5π/2 .  

* * * - 2π ≤ π/2 +2πn ≤  3π ⇔ -2 ≤ 1/2+2n ≤ 3 ⇔ -2,5 ≤ 2n ≤ 2,5 ⇔

- 1,25 ≤ n ≤ 1,25  ⇒ n = - 1 ; 0 ; 1  * * *                                        

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вычислите площадь криволинейной трапеции ограниченной линиями 1)y=x^3+3, y=0, x=-1, x=12)y=3/sin^2x, y=0, x=п/6, x=3п/4
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Косарев
ЕлизаветаВладимирович
Sergeevna803
orantus3
Valerii276
dannytr
BogdanR106203
kapitan19
Kati2005
sochi-expert
Егорова
dimanov
fomindmity1
bryzgalovag
lenarzhaeva