kiparistop
?>

Из 12 членов команды нужно выбрать капитана и заместителя. Сколькими можно это сделать?​

Алгебра

Ответы

bhg50

Сначала выбираем капитана из 12-ти человек, потом зама из 11-ти (12-1=11). Выбирать их можно

Ромеовна1527

Из 12 выбрать командира (12-1=11).Потом из 11 одиннадцати выбрать зама. Точно не знаю,но это можно сделать очень многими

MonashevFesenko1483

Решение системы уравнений    х₁=5      х₂= -6      х₃=6

                                                        у₁=1      у₂= -10     у₃=2

Объяснение:

Решить систему уравнений

(x-5y)(x²-36)=0  

x-y=4

Выразим х через у во втором уравнении:

х=4+у

Первые скобки приравняем к нулю, как один из множителей, дающих в результате ноль:

x-5y=0

Подставим выраженное х через у:

4+у-5у=0

4-4у=0

-4у= -4

у= -4/-4

у₁=1

Теперь подставляем значение у в уравнение первых скобок и вычисляем х:

x-5y=0

х=5у

х=5*1

х₁=5

Теперь приравняем к нулю вторые скобки, как один из множителей, дающих в результате ноль:

x²-36=0

x²=36

х₂,₃=±√36

х₂= -6

х₃=6

x-y=4

-у=4-х

у=х-4

у₂=х₂-4

у₂= -6-4

у₂= -10

у₃=х₃-4

у₃=6-4

у₃=2

Решение системы уравнений    х₁=5      х₂= -6      х₃=6

                                                        у₁=1      у₂= -10     у₃=2

merx80

\overrightarrow{n}=-\overrightarrow{x}+\overrightarrow{y}+\overrightarrow{z}\\ \\ \overrightarrow{u}=3\overrightarrow{x}-4\overrightarrow{y}+\overrightarrow{z}\\\\\overrightarrow{v}=-1\overrightarrow{x}+2\overrightarrow{y}-3\overrightarrow{z}

В базисе \overrightarrow{x},\;\overrightarrow{y},\;\overrightarrow{z} векторы имеют следующие координаты:

\overrightarrow{n}=(-1; 1;1)\\ \\ \overrightarrow{u}=(3; -4;1)\\ \\ \overrightarrow{u}=(-1; 2;-3)\\ \\

Их координаты попарно не пропорциональны, поэтому эти векторы не коллинеарны между собой.

Докажем компланарность векторов двумя

школьный (≈10 класс)

Признак компланарности трёх векторов:

Пусть векторы \overrightarrow{a} и \overrightarrow{b} не коллинеарны. Если для вектора \overrightarrow{c} существует единственная пара реальных чисел A и B, такая, что \overrightarrow{c}=A\overrightarrow{a}+B\overrightarrow{b}, то векторы \overrightarrow{a},\;\overrightarrow{b},\;\overrightarrow{c} компланарны.

Покажем, что

\overrightarrow{u}=A\overrightarrow{n}+B\overrightarrow{v}\\ \\ (3;-4;1)=A(-1;1;1)+B(-1;2;-3)\\ \\ (3;-4;1)=(-A;A;A)+(-B;2B;-3B)\\ \\ (3;-4;1)=(-A-B;A+2B;A-3B)

Слева и справа стоят координаты векторов. Векторы равны, если равны их соответственные координаты:

\left\{\begin{matrix}3=-A-B,\\ -4=A+2B,\\ 1=A-3B\end{matrix}\right.

Сложим первое и второе уравнение, получим:

-1 = B

Подставим значение B в первое уравнение, найдём A:

3 = -A - (-1)

A = -2

Проверим найденные значения для остальных уравнений системы.

Итого получаем:

\overrightarrow{u}=-\overrightarrow{n}-2\overrightarrow{v}

То есть признак выполнен. Значит векторы компланарны.

обычно проходится в вузах):

Векторы \overrightarrow{a}(a_1;a_2;a_3),\;\overrightarrow{b}(b_1;b_2;b_3),\;\overrightarrow{c}(c_1;c_2;c_3)) компланарны, если

\begin{vmatrix}a_1 & a_2 & a_3\\ b_1 & b_2 & b_3\\ c_1& c_2 & c_3\end{vmatrix}=0

Проверим это условие для данных векторов:

\begin{vmatrix} -1& 1 & 1\\ 3 & -4 & 1\\ -1 & 2 & -3\end{vmatrix}=-1\begin{vmatrix} -4 & 1\\ 2 & -3\end{vmatrix}-1\begin{vmatrix}3 & 1\\ -1 & -3\end{vmatrix}+1\begin{vmatrix}3 & -4 \\ -1 & 2 \end{vmatrix}=\\ \\\\ =-1(12-2)-1(-9+1)+1(6-4)=-10+8+2=0

Следовательно, векторы компланарны.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Из 12 членов команды нужно выбрать капитана и заместителя. Сколькими можно это сделать?​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Richbro7
andreyshulgin835
shuxratmaxmedov
vsnimschikov391
vladimirdoguzov
ktatarinova
kuk-nina
v79150101401
dg9792794674
asl09777
tsarkovim
vedaikin
Иванов1813
Gor Anatolevich
Евгеньевич Балиловна1398