Пусть x ч — время мотоциклиста от А до С, тогда расстояние от А до С равно 90x км.
Автомобиль от А до С затратил на 1 час больше, т.е. (x+1) ч, тогда скорость автомобиля на участке от А до С равна 90x/(x+1) км/ч.
Расстояние от С до В равно (300-90x) км. Когда мотоциклист вернулся в А, автомобиль прибыл в В, то время, затраченное автомобилем от С до В равно x ч, следовательно скорость автомобиля на участке от С до В равна (300-90x)/x км/ч.
Так как скорость автомобиля на обоих участках постоянная, получим уравнение:
90x/(x+1) = (300-90x)/x
90x^2 = 300x + 300 — 90x^2 — 90x
6x^2 — 7x — 10 = 0
D = 289
x1 = 2 (ч) время мотоциклиста от А до С
x2 = -5/6 (не удовлетворяет условию задачи)
1) 90·2 = 180 (км) — расстояние от А до С.
ответ: 180
Поделитесь своими знаниями, ответьте на вопрос:
Arcsin(cos25градусов) вместе с решением и
1. Похоже, потерялся знак >, потому что стоит точка. Тогда неравенство верно, ведь если из большего числа отнять меньшее, то получится положительное число, а оно явно больше -21.
2. Неверно, так как чем больше абсолютная величина отрицательного числа, тем это число меньше. Например, пусть a = 10, b = 5 (нам разрешено брать натуральные a и b). Тогда -2*10 < -2*5, потому что -20 < -10
3. Неверно, потому что частное меньше единицы, если числитель меньше знаменателя, а по условию a > b
4. Неверно, ибо a > b