Выразим y обоих случаях:
y = 1/2*x² - 1/2
у=x+1
Найдем точки соприкосновения графиков:
х+1 = 1/2*x² - 1/2
2х+2 = х² -1
х²-1-2х-2=0
х²-2х-3=0
D = 4+12=16 - 2 корня
х1 = (2+4)/2 = 3
х2= (2-4)/2 = -1
Таким образом, графики фунции пересеаются в двух точках х=-1 и х=3, причем график функции у=x+1 будет расположен выше графика функции y = 1/2*x² - 1/2 на этом отрезке.
Теперь можем найти площадь фигуры:
S = ∫₋₁³ (x+1-(1/2*x² - 1/2))dx = ∫₋₁³ (x+1-1/2*x² + 1/2 )dx = ∫₋₁³ (x-1/2*x² +3/2)dx = (1/2*x² - 1/6*x³+ 3/2*x) |₋₁³ = (9/2 - 27/6 +9/2) - (1/2 + 1/6 - 3/2) = 9/2 +5/6 = 27/6 + 5/6 = 32/6 = 16/3 = 5ц1/3
Поделитесь своими знаниями, ответьте на вопрос:
определите значение параметра а в уравнении у=ах, если известно что эта прямая параллельна прямой -2х+4х-3=0
6x² - 11x - 2 < 0
Рассмотрим квадратичную функцию у = 6x² - 11x - 2. Графиком этой функции является парабола, ветви которой направлены вверх.
Выясним, как расположена эта парабола относительно оси Ох. Для этого решим уравнение 6x² - 11x - 2 = 0:
D = (-11)² - 4 · 6 · (-2) = 121 + 48 = 169; √169 = 13
х₁ = (11 + 13)/(2 · 6) = 24/12 = 2
х₂ = (11 - 13)/(2 · 6) = -2/12 = -1/6
Значит, парабола пересекает ось Ох в двух точках, абсциссы которых равны -1/6 и 2.
Покажем на чертеже, какие значения (по знаку) принимает функция на каждом из промежутков числовой оси (см. рис. в приложении).
х ∈ (-1/6; 2)ответ: (-1/6; 2).