dumpler
?>

Является ли линейной функция заданная формулой y=2(1+3x)+7(x-3)y=x(9-x)+x2​

Алгебра

Ответы

mixtabak2
Пусть х (км/ч) - скорость лодки в стоячей воде, тогда
х + 1 (км/ч) - скорость лодки по течению реки
х - 1 (км/ч) - скорость лодки против течения реки

S = v * t - формула пути
v = х + 1 + х - 1 = 2х (км/ч) - скорость сближения
t = 1,9 (ч) - время в пути
S = 98,8 (км) - расстояние между пристанями
Подставим все значения в формулу и решим уравнение:
2х * 1,9 = 98,8
3,8х = 98,8
х = 98,8 : 3,8
х = 26 (км/ч) - скорость лодки в стоячей воде;
(26 + 1) * 1,9 = 51,3 (км) - расстояние до места встречи, которое пройдёт лодка, плывущая по течению реки;
(26 - 1) * 1,9 = 47,5 (км) - расстояние до места встречи, которое пройдёт лодка, плывущая против течения реки.
ответ: 26 км/ч; 51,3 км; 47,5 км.
BirUlek215

ответ: 8.

Первый решение в лоб):

1·2·3·...·37 = 2³⁴·3¹⁷·5⁸·7⁵·11³·13²·17²·19·23·29·31·37 = 2²⁶·3¹⁷·7⁵·11³·13²·17²·19·23·29·31·37·10⁸

На 8 нулей оканчивается т.к. 10⁸. И другие множители не дадут нулей в конце.

Покажу, как разложить на простые множители такое произведение, на примере множителя  2.

От 1 до 37:

36:2=18 чисел кратных 2.

36:4=9 чисел кратных 4.

32:8=4 числа кратных 8.

32:16=2 числа кратных 16.

32:32=1 число кратное 32.

С каждой следующей кратность мы подсчитываем по одной 2 в множителя чисел. Поэтому всего 2 встречается 18+9+4+2+1=34 раза.

Второй проще предыдущего):

Количество нулей числа зависит от того, сколько раз встречается 5 и 2 при разложении этого числа на простые множители т.к. 10=2·5.

Как и в первом подсчитаем, что всего 34 двойки и 8 пятёрок. Значит, можно "составить" не более 8 десяток. И будет 8 нулей в конце.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Является ли линейной функция заданная формулой y=2(1+3x)+7(x-3)y=x(9-x)+x2​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Styazhkin395
evada2
Vipnikavto58
Антон
antoska391
AleksandrIvanovich1273
nzagrebin363
Вадим-Рашад323
Boykoyelena
andreokiseleo69421
juliaWinter
rstas
Кислинская1055
Volochaev
А Дзукаев1562