1)2cosx+1=0, cosx=-1/2, x=+-2π/3+2πk, k∈z
2sinx-√3=0, sinx=√3/2, x=(-1)^k*π/3+kπ,k∈z
2) cosx(2-3sinx)=0,sinx=0,x=πk,k∈z
2-3sinx=0, sinx=2/3, x=(-1)^k arcsin2/3+πk,
3)sinx(4sinx-3)=0, sinx=0, x=πk,k∈z
4sinx-3=0 sinx=3/4, x=(-1)^karcsin3/4+πk,k∈z
4)(sin^2(x)=1/2,x=+-π/4+πk,k∈z.
5)6sin^2(x)+sinx-2=0,Sinx=t, 6t^2+t-2=0 , его корни t1=-2/3,t2=1/2,
sinx=-2/3,x=(-1)^(k+1)arcsin2/3+πk,k∈z, sinx=1/2,x=(-1)^kπ/6+πk,k∈z.
6) 3cos^2(x)-7sinx-7=0,Заменим косинус на синус получим
3sin^2(x)+7sinx+4=0, его корни sinx=-8/6- корней нет, sinx=-1, x= -π/2+2πk,k∈z
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Дано: а > 0, b<0. Яка з наведених нерівностей може бути правильною?a) a²<b²b) a/b<1c)a-b<0d)a²b³>0
х€(0; +оо)
Графическое решение
неравенств.
Объяснение:
Шаг 1.
Строим график функции
у=2^х.
Показательная функция
а>1 ==> функция возрастает.
Пересекает ось ординат в
точке х=0.
у(0)=2^0=1
Шаг 2.
Строим график фцнкции
у=1-х или у=-х+1.
Линейная функция k<0
==> функция убывает.
Пересекает ось ординат в
точке х=0.
у(0)=0+1=1
Шаг 3.
В одной системе координат
строим графики функций
(по точкам).
Графики пересекаются в
точке (0; 1).
Шаг4.
Графически решаем задан
ное неравенство:
определяем участки, на кото
рых график функции у=2^х
расположен выше графика
функции у=-х+1.
х€(0; +оо).
х€(0; +оо)