Поделитесь своими знаниями, ответьте на вопрос:
Среди участников художественного кружка провели конкурс. Всего детей было 7. На следующий день родители спросили каждого из них, какие места они заняли. Оказалось, что некоторые из детей увеличили номер своего места, и если сложить все названные места, то сумме получилось 30. Каково могло быть максимальное число лжецов среди этих художников?
(x^3+4x^2-9x-36)/(x^3+2x^2-11x-12)
Разложим числитель на множители:
x^3+4x^2-9x-36= (x^3+4x^2)-(9x+36)=x^2(x+4)-9(x+4)=(x^2-9)(x+4)=(x-3)(x+3)(x+4)
Разложим знаменатель на множители:
x^3+2x^2-11x-12
Попробуем подобрать число, при подстановке которого наше выражение равно нулю. Первое такое число "-1". Разделим наш знаменатель на х+1:
x^3+2x^2-11x-12 | x+1
x^3 +x^2 x^2+x-12
x^2 -11x
x^2 + x
-12x-12
-12x-12
0
Мы получили квадратное уравнение х^2+x-12,
корнями которого будут числа "3" и "-4".
Итак, x^3+2x^2-11x-12=(х+1)(х-3)(х+4)
Наша дробь примет вид (x-3)(x+3)(x+4)/(х+1)(х-3)(х+4)=(х+3)/(х+1)