Поделитесь своими знаниями, ответьте на вопрос:
Стороны треугольника равны 40 м, 30 м, 14 м. Вычисли наибольшую высоту этого треугольника. Наибольшая высота равна м. Дополнительные вопросы: 1. какие формулы площади треугольника используются в решении задачи? SΔ=a⋅ha2 SΔ=p(p−a)(p−b)(p−c)−−−−−−−−−−−−−−−−−√ SΔ=a⋅b⋅sinγ2 SΔ=a23–√4 2. Чему равна площадь треугольника? м2. 3. Какое высказывание верное? В треугольнике наибольшая та высота, которая проведена к наименьшей стороне В треугольнике наибольшая та высота, которая проведена к наибольшей сторо
x2 + 4x + 8 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = 42 - 4·1·8 = 16 - 32 = -16
Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.
4x2 - 12x + 9 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-12)2 - 4·4·9 = 144 - 144 = 0
Так как дискриминант равен нулю то, квадратное уравнение имеет один действительных корень:
x = 122·4 = 1.5
3x2 - 4x - 1 = 0
Найдем дискриминант квадратного уравнения:
D = b2 - 4ac = (-4)2 - 4·3·(-1) = 16 + 12 = 28
Так как дискриминант больше нуля то, квадратное уравнение имеет два действительных корня:
x1 = 4 - √282·3 = 23 - 13√7 ≈ -0.21525043702153024
x2 = 4 + √282·3 = 23 + 13√7 ≈ 1.5485837703548635
2x2 - 9x + 15 = 0 Найдем дискриминант квадратного уравнения: D = b2 - 4ac = (-9)2 - 4·2·15 = 81 - 120 = -39 Так как дискриминант меньше нуля, то уравнение не имеет действительных решений.