Поделитесь своими знаниями, ответьте на вопрос:
Задача 1. Последовательность с рекуррентной формулой a1 = 10, an + 1 = 5a (n): а) Запишите 2-й и 3-й члены цепочки; б) Напишите формулу для n-го члена цепочки через n; в) Айбек сказал, что номер 6250 будет членом этой цепочки. Верно ли заявление Айбека? Обосновать ответ.
f`(x)=3x²-2x-1=0
D=4+12=16
x1=(2-4)/6=-1/3 x2=(2+4)/6=1
+ _ +
возр -1/3 убыв 1 возр
x∈(-∞;-1/3) U (1;∞)
2)f(x)=x³-6x²
f`(x)=3x²-12x=3x(x-4)=0
x=0 x=4
+ _ +
0 4
max min
ymax(0)=0 ymin(4)=64-96=-32
3)f(x)=1/3x³-4x
f`(x)=x²-4=(x-2)(x+2)=0
x=2∈[0;3] x=-2∉[0;3]
f(0)=0 max
f(2)=8/3-8=-16/3 min
f(3)=9-12=-3
4)f(x)=x³-3x
D(y)∈(-∞;∞)
f(-x)=-x³+3x=-(x³-3x) -нечетная
Точки пересечения с осями
0=0 у=0
х³-3х=0 х(х²-3)=0 х=0 х=-√3 х=√3
(0;0) (-√3;0) (√3;0)
f`(x)=3x²-3=3(x-1)(x+1)=0
x=-1 x=1
+ _ +
возр -1 убыв 1 возр
max min
ymax(-1)=2 ymin(1)=-2