Выразим y обоих случаях:
y = 1/2*x² - 1/2
у=x+1
Найдем точки соприкосновения графиков:
х+1 = 1/2*x² - 1/2
2х+2 = х² -1
х²-1-2х-2=0
х²-2х-3=0
D = 4+12=16 - 2 корня
х1 = (2+4)/2 = 3
х2= (2-4)/2 = -1
Таким образом, графики фунции пересеаются в двух точках х=-1 и х=3, причем график функции у=x+1 будет расположен выше графика функции y = 1/2*x² - 1/2 на этом отрезке.
Теперь можем найти площадь фигуры:
S = ∫₋₁³ (x+1-(1/2*x² - 1/2))dx = ∫₋₁³ (x+1-1/2*x² + 1/2 )dx = ∫₋₁³ (x-1/2*x² +3/2)dx = (1/2*x² - 1/6*x³+ 3/2*x) |₋₁³ = (9/2 - 27/6 +9/2) - (1/2 + 1/6 - 3/2) = 9/2 +5/6 = 27/6 + 5/6 = 32/6 = 16/3 = 5ц1/3
Поделитесь своими знаниями, ответьте на вопрос:
2. Запишите алгебраическое выражение в виде многочлена стан- дартного вида:а) 9-(3+a) (2а + 3);б) 4а + (а-а?) (3 + 4а);в) (1 – 2x) (2 +х) + (1 –x) (2 – 2х);г) (x-3) (х – 4) - (х-5)(х-2
Выразим y обоих случаях:
y = 1/2*x² - 1/2
у=x+1
Найдем точки соприкосновения графиков:
х+1 = 1/2*x² - 1/2
2х+2 = х² -1
х²-1-2х-2=0
х²-2х-3=0
D = 4+12=16 - 2 корня
х1 = (2+4)/2 = 3
х2= (2-4)/2 = -1
Таким образом, графики фунции пересеаются в двух точках х=-1 и х=3, причем график функции у=x+1 будет расположен выше графика функции y = 1/2*x² - 1/2 на этом отрезке.
Теперь можем найти площадь фигуры:
S = ∫₋₁³ (x+1-(1/2*x² - 1/2))dx = ∫₋₁³ (x+1-1/2*x² + 1/2 )dx = ∫₋₁³ (x-1/2*x² +3/2)dx = (1/2*x² - 1/6*x³+ 3/2*x) |₋₁³ = (9/2 - 27/6 +9/2) - (1/2 + 1/6 - 3/2) = 9/2 +5/6 = 27/6 + 5/6 = 32/6 = 16/3 = 5ц1/3