Александровна1685
?>

3. Дана функция у = 0, 4х^2 - 7Найдите у, если х= 1; х=- 3​

Алгебра

Ответы

victoriadan
Во-первых, область определения
1) -7 - 8x - x^2 >= 0
x^2 + 8x + 7 <= 0
(x + 7)(x + 1) <= 0
x = [-7; -1]
2) 2a + 3 - ax >= 0 (потому что корень арифметический)
Это проще потом подставить для проверки.

Во-вторых, решаем само уравнение.
Оставляем корень слева, остальное справа
\sqrt{-x^2-8x-7}=-ax+2a+3
Возводим в квадрат
-x^2 - 8x - 7 = (-ax + 2a + 3)^2 = a^2*x^2 - 2ax(2a+3) + (2a+3)^2
-x^2 - 8x - 7 = a^2*x^2 - 4a^2*x - 6a*x + (4a^2+12a+9)
Сносим все вправо
0 = x^2*(a^2+1) + x*(-4a^2 - 6a + 8) + (4a^2+12a+9+7)
x^2*(a^2+1) - 2x*(2a^2 + 3a - 4) + (4a^2+12a+16) = 0
Если это уравнение имеет единственный корень, то
возможны 2 варианта:
A) D = 0
B) D > 0, но только один из корней принадлежит [-7, -1].
Решаем
D/4 = (2a^2 + 3a - 4)^2 - (a^2+1)(4a^2+12a+16) =
= 4a^4+12a^3-16a^2+9a^2-24a+16 -
- (4a^4+12a^3+16a^2+4a^2+12a+16) =
= -32a^2 + 5a^2 - 36a = -27a^2 - 36a = 9a*(-3a - 4)
A) D = 0 при a1 = 0 (x = -4), a2 = -4/3 (x = -8/5)

B) D > 0 при a ∈ (-4/3; 0)
x1= \frac{2a^2+3a-4- 3\sqrt{-3a^2-4a} }{a^2+1}
x2= \frac{2a^2+3a-4+ 3\sqrt{-3a^2-4a} }{a^2+1}
Дальше надо решить две такие системы:
1)
{ [2a^2+3a-4 - 3√(-3a^2-4a)] / (a^2+1) > -7
{ [2a^2+3a-4 - 3√(-3a^2-4a)] / (a^2+1) < -1
{ [2a^2+3a-4 + 3√(-3a^2-4a)] / (a^2+1) > -1

2)
{ [2a^2+3a-4 - 3√(-3a^2-4a)] / (a^2+1) < -7
{ [2a^2+3a-4 + 3√(-3a^2-4a)] / (a^2+1) < -1
{ [2a^2+3a-4 + 3√(-3a^2-4a)] / (a^2+1) > -1

Но у меня уже сил нет.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

3. Дана функция у = 0, 4х^2 - 7Найдите у, если х= 1; х=- 3​
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Ioanova Korneeva1093
inikonovich
геннадиевна2001
ok-49566
Александр Сергей
f-d-a-14
annatarabaeva863
anton
Даниил247
kovalenko262
Анна1417
elenalusia
director3
julianikaleksandrova
YaroslavSerganYS5