Разложение многочлена на множители вынесения общего множителя за скобкиВынести за скобки общий множитель: 4х4 – 8х3 + 2х2 -18х.1) Каждый член многочлена 4х4 – 8х3 + 2х2 -18х можно заменить произведением двух множителей, один из которых равен 2х: 2х×2х3 – 2х×4х2 + 2х×х -2х×9.2) Воспользуемся распределительным законом умножения и вынесем 2х - общий множитель за скобки: 2х(2х3 – 4х2+ ×х -9).Получим: 4х4 – 8х3 + 2х2 -18х= 2х(2х3 – 4х2 + ×х -9). Разложение многочлена на множители группировкиЕсли члены многочлена не имеют общего множителя, отличного от 1, то можно попытаться разложить такой многочлен группировки.Для этого надо объединить в группы те члены, которые имеют общие множители, и вынести за скобки общий член каждой группы. Если после таких преобразований окажется общий множитель у всех получившихся групп, то его вынести за скобки. Разложить многочлен на множители: 10ay – 5cy +2ax-cx.1) Объединим в первую группу 10ay и 2ax, а во вторую группу -5cy и -cx: (10ay и 2ax) + (-5cy и -cx) .2) В первой группе вынесем за скобки общий множитель 2а, во второй группе вынесем за скобки общий множитель -с: 2а(5у+х)-с(5у+х).3) Как видим, оба члена многочлена имеют общий множитель (5y+х), вынесем его за скобки: (5y+х)(2а-с).Получим: 10ay – 5cy +2ax-cx= (5y+х)(2а-с).ответ а)м^2-2м+1-н^2-5н+25 б)(3+с)^2
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
2.2. В первый день путник км. Каждый последующий день он будет проходить на 3 км больше предыдущего дня. Какое расстояние путник за шесть дней?
Разложение многочлена на множители группировкиЕсли члены многочлена не имеют общего множителя, отличного от 1, то можно попытаться разложить такой многочлен группировки.Для этого надо объединить в группы те члены, которые имеют общие множители, и вынести за скобки общий член каждой группы. Если после таких преобразований окажется общий множитель у всех получившихся групп, то его вынести за скобки.
Разложить многочлен на множители: 10ay – 5cy +2ax-cx.1) Объединим в первую группу 10ay и 2ax, а во вторую группу -5cy и -cx: (10ay и 2ax) + (-5cy и -cx) .2) В первой группе вынесем за скобки общий множитель 2а, во второй группе вынесем за скобки общий множитель -с: 2а(5у+х)-с(5у+х).3) Как видим, оба члена многочлена имеют общий множитель (5y+х), вынесем его за скобки: (5y+х)(2а-с).Получим: 10ay – 5cy +2ax-cx= (5y+х)(2а-с).ответ а)м^2-2м+1-н^2-5н+25 б)(3+с)^2