maxkuskov2485
?>

Задача на фото, номер 33.6

Алгебра

Ответы

volodin-alexander
Y = 4x - 4tgx + π - 9,
y' = 4 - 4/cos²x.

Находим критические точки (для полноты необходимо было бы также исследовать точки разрыва производной, но они не входят в промежуток [-π/4; π/4], потому можно не рассматривать):
у' = 0,
4 - 4/cos²x = 0
cos²x = 1,
cosx = ±1,
x = πn, n ∈ ℤ.
Нас интересует промежуток [-π/4; π/4], потому критическая точка - 0.
у' = 4 - 4/cos²x принимает неположительные значения при любом х. Значит на промежутке [-π/4; π/4] функция у = 4х - 4tgx + π - 9 убывает. Значит наибольшее значение она будет принимать при -π/4. Это значение равно у max. = y(-π/4) = -5.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Задача на фото, номер 33.6
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

prik-galina7390
Корнеплодович1930
Реши неравенство 4a/11> 3 ответ: a
Ольга
Мария Кашихина
nastikak8
ievlevasnezhana7
vantoslaltd
ivanovk3599
dvbbdv4
Olegovna Volkov
Kaccak8778
lzelenyi5
Tsibrova
Veril8626
Андрей_Станиславовна