galtig83
?>

Дракон, который сидел в пещере и охранял сокровища, украденные у гномов, через некоторое время согласился выплачивать процент жителям Дейла, которые подрядились оберегать его сон, поскольку сокровищ было несметное количество, а дракона без конца беспокоили гномьи экспедиции. Хороший же сон обеспечил бы Смаугу возможность периодически грабить другие сокровищницы и приумножать горы золота. Проценты стали начисляться со дня, в который это решение было принято, до срока, когда стороны решат расторгнуть договор. Проценты эти жители города договорились периодически забирать, для того чтобы покупать хорошие дубовые доски для изготовления бочек. 1 января 20950 года, за несколько десятков лет до рождения Фродо Бэггинса, был заключён этот договор. Сокровища в пещере были оценены сторонами в размере 1, 6 млн золотых, а процент, который дракон согласился отдавать, был равен 5% в год от суммы оценки, срок договора определили немалый — 52 лет (год Причитающиеся проценты можно будет забирать первого числа каждого следующего месяца. Смогут ли мастера купить досок в июле 20952 года на сумму 59 тыс. золотых, если сделать это они могут только на проценты от сокровища? (В ответе укажи возможность или невозможность покупки и сумму, которые жители города получат к этому сроку. ответ округли до тысяч.)

Алгебра

Ответы

morozovalexander90
Для начала напишем ОДЗ:
х+1≠0 и х+2≠0, значит
х≠-1 и х≠-2
\frac{ x^{2} - a^{2} }{(x+1)(x+2)} =0 \\ \\ \frac{ (x-a)(x+a) }{(x+1)(x+2)} =0 \\ (x-a)(x+a)=0 \\ 1)x-a=0 \\ x=a \\ 2)x+a=0 \\ x=-a
данное уравнение может иметь два корня
ОДИН корень уравнение имеет в следующих случаях:
1 случай
а=-а
2а=0
а=0
2 случай 
один из корней числителя равен одному из корней знаменателя:
х+а=х+1
а=1
3 случай
х+а=х+2
а=2
4 случай
х-а=х+1
а=-1
5 случай
х-а=х+2
а=-2
при всех данных а уравнение имеет 1 корень.
Отв:а=0; а=1; а=-1; а=2; а=-2 

В этом можно убедиться:
1)пусть а=0, тогда
\frac{ x^{2} - 0^{2} }{(x+1)(x+2)} =0 \\
x²=0
x=0 -1 корень
2) пусть а=1, тогда 
\frac{ x^{2} - 1^{2} }{(x+1)(x+2)} =0 \\\frac{ (x-1)(x+1) }{(x+1)(x+2)} =0 \\\frac{ (x-1) }{(x+2)} =0
x-1=0
x=1 - 1 корень
3) пусть а=-1, тогда
 \frac{ x^{2} - (-1)^{2} }{(x+1)(x+2)} =0 \\ \frac{ x^{2} - 1^{2} }{(x+1)(x+2)} =0 \\\frac{ (x-1)(x+1) }{(x+1)(x+2)} =0 \\\frac{ (x-1) }{(x+2)} =0
x-1=0
x=1 - 1 корень
4) а=2
\frac{ x^{2} - 2^{2} }{(x+1)(x+2)} =0 \\\frac{ (x-2)(x+2) }{(x+1)(x+2)} =0 \\\frac{ (x-2) }{(x+1)} =0
х-2=0
х=2 - 1 корень
5) а=-2
\frac{ x^{2} - (-2)^{2} }{(x+1)(x+2)} =0\\ \frac{ x^{2} - 2^{2} }{(x+1)(x+2)} =0 \\\frac{ (x-2)(x+2) }{(x+1)(x+2)} =0 \\\frac{ (x-2) }{(x+1)} =0
х-2=0
х=2 - 1 корень

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дракон, который сидел в пещере и охранял сокровища, украденные у гномов, через некоторое время согласился выплачивать процент жителям Дейла, которые подрядились оберегать его сон, поскольку сокровищ было несметное количество, а дракона без конца беспокоили гномьи экспедиции. Хороший же сон обеспечил бы Смаугу возможность периодически грабить другие сокровищницы и приумножать горы золота. Проценты стали начисляться со дня, в который это решение было принято, до срока, когда стороны решат расторгнуть договор. Проценты эти жители города договорились периодически забирать, для того чтобы покупать хорошие дубовые доски для изготовления бочек. 1 января 20950 года, за несколько десятков лет до рождения Фродо Бэггинса, был заключён этот договор. Сокровища в пещере были оценены сторонами в размере 1, 6 млн золотых, а процент, который дракон согласился отдавать, был равен 5% в год от суммы оценки, срок договора определили немалый — 52 лет (год Причитающиеся проценты можно будет забирать первого числа каждого следующего месяца. Смогут ли мастера купить досок в июле 20952 года на сумму 59 тыс. золотых, если сделать это они могут только на проценты от сокровища? (В ответе укажи возможность или невозможность покупки и сумму, которые жители города получат к этому сроку. ответ округли до тысяч.)
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

vadim1140
andrew55588201824
ielienakozlova696
chulki-kupit
m79857860146895
ievlevasnezhana7
vlebedeva81
nata27-73589
k075ko8
zmlavra
Nikolaevich824
sbelova
northwest7745
leeka152522
Advantage9111