Есть правило о том, что любое число в чётной степени всегда
То есть если мы (-6) возводим в чётную степень 4, то знак меняется с "минуса" на "плюс".
А вот с нечётной степенью это не работает. То есть если мы возводим (-12) в нечётную степень 7, то знак остаётся такой, какой был. А мы знаем, что любое отрицательное число всегда меньше положительного. Поэтому
2) и
Здесь ещё проще. Под числом -8 мы понимаем -1*8. В первом случае (где без скобок записано) в восьмую степень возводится только сама 8, а "минус единица", можно сказать, остаётся за скобкой. Примитивно можем записать так:
Поэтому когда возводим 8 в восьмую (чётную) степень, знак всё равно не меняется, так как - 1 у нас осталось с таким же знаком "минус".
А вот во втором случае (где скобки) скобками нам показывают, что в чётную степень 8 возводиться как - 1, так и сама 8. Поэтому как ни крути, получим положительное число:
Значит,
ksuhova
31.01.2020
Все натуральные числа представимы в одном из видов 5k, 5k +-1, 5k + 2, тогда квадраты остатки 0, 1 и 4 при делении на 5. 65 делится на 5, тогда, чтобы получился полный квадрат, необходимо, чтобы 2^n давало остаток 0, 1 или 4 при делении на 5. вычисляем остатки от деления на 5 степеней двойки: 2^1 = 2 = 2 (mod 5) — неподходящий остаток 2^2 = 4 = 4 (mod 5) 2^3 = 8 = 3 (mod 5) — неподходящий остаток 2^4 = 16 = 1 (mod 5) 2^5 = 32 = 2 (mod 5) — такой же остаток, что и у 2^1, так как остаток при делении степени на 5 зависит только от остатка при делении на 5 предыдущей степени, то из того, что 2^1 и 2^5 одинаковые остатки, следует, что последовательность остатков периодична с периодом 4. значит, так как при показателях, меньших 5, подходили только степени с чёётным показателем, то можно сделать вывод, что n чётно, n = 2m. 2^(2m) + 65 = k^2 k^2 - (2^m)^2 = 65 (k + 2^m)(k - 2^m) = 65 65 можно разложить на два множителя следующими способами: 65 = 65 * 1 = 13 * 5. получаем два возможных варианта: 1) k + 2^m = 65, k - 2^m = 1 вычитаем из первого уравнения второе, получаем 2 * 2^m = 64, m = 5, n = 10 (тогда 2^10 + 65 = 1089 = 33^2) 2) k + 2^m = 13, k - 2^m = 5 2 * 2^m = 8 m = 2 n = 4 (в этом случае 2^n + 65 = 81 = 9^2). ответ. при n = 4 и n = 10.
Здесь есть несколько простых правил. Смотри:
1)
и 
Есть правило о том, что любое число в чётной степени всегда
То есть если мы (-6) возводим в чётную степень 4, то знак меняется с "минуса" на "плюс".
А вот с нечётной степенью это не работает. То есть если мы возводим (-12) в нечётную степень 7, то знак остаётся такой, какой был. А мы знаем, что любое отрицательное число всегда меньше положительного. Поэтому
2)
и 
Здесь ещё проще. Под числом -8 мы понимаем -1*8. В первом случае (где без скобок записано) в восьмую степень возводится только сама 8, а "минус единица", можно сказать, остаётся за скобкой. Примитивно можем записать так:
Поэтому когда возводим 8 в восьмую (чётную) степень, знак всё равно не меняется, так как - 1 у нас осталось с таким же знаком "минус".
А вот во втором случае (где скобки) скобками нам показывают, что в чётную степень 8 возводиться как - 1, так и сама 8. Поэтому как ни крути, получим положительное число:
Значит,