х=0
Объяснение:
логарифм это показатель степени в который надо возвести основание ,чтобы получить логарифмируемое выражение. Если логарифы по ожинаковым основаниям,то сумма логарифмов равна произведению внутренних выражений. разность-деление. Сомножитель перед лог входит в лог в качестве показателя степени. Теперь посмотрим,как преобразуется наше уравнение. Сперва внесем сомножители в степень внутри. дробная степень означает корень степени знаменатели из числа в степени числителя. степень 1/2 означает квадратный корень.
log₃(х+1)¹⁾²= log ₃√(х+4) - log ₃ √2²
log₃√(х+1)= log ₃√(х+4) - log ₃ 2 минус означает деление
log₃√(х+1)= log ₃√(х+4) /2
раз логарифмы равны,значит равны и логарифмируемые выражения
√(х+1)= √(х+4) /2 возводим в квадрат
(х+1)= (х+4) /4
4(х+1)= (х+4)
4х+4=х+4
3х=0
х=0
проверяем log₃(0+1)¹⁾²= log ₃√(0+4) - log ₃ √2²
log₃1= log ₃2 - log ₃ 2 , (3⁰=1) 0=0 все правильно. Если неясно спроси.
3/4 (Это дробь).
Объяснение:
1.1. по определению:
(2−x)−1=12−x.
1.2. Рассмотрим важное тождество, которое часто используется на практике: (ab)−1=ba.
Значит: (2−x3x)−1=3x2−x.
1.3. Упростим выражение, которое находится в знаменателе дроби:
3−(2−x3x)−1=3−3x2−x=3\2−x−3x2−x=3(2−x)−3x2−x=6−3x−3x2−x=6−6x2−x.
1.4. Получим: 3x(2−x)−13−(2−x3x)−1=3x2−x6−6x2−x=3x2−x:6−6x2−x=3x2−x⋅2−x6−6x=3x(2−x)(2−x)(6−6x)=3x6−6x.
2. Далее подставим вместо x=35:
3x6−6x=3⋅356−6⋅35=(3⋅35):(6−6⋅35)=3⋅35:6⋅5−6⋅35=95⋅512=9⋅55⋅12=34.
Поделитесь своими знаниями, ответьте на вопрос: