x^2+y^2=29 умножим на 4
получим 4x^2+4y^2=116 =>
y^2-4x^2=9
+
4x^2+4y^2=116
y^2+4y^2+4x^2-4x^2=9+116
сократим ( 4x^2 - 4x^2 ) => y^2+4y^2=125
5 y^2=125 поделим на пять
y^2= 25
y=+- 5
если y= -5, то (-5)^2 - 4x^2 = 9
25 - 4x^2=9
-4x^2 = 9-25
-4x^2= - 16 умножим на минус один
4x^2=16 делим на четыре
x^2=4
x= +-2
если y= 5, то 5^2 - 4x^2 = 9
25 - 4x^2=9
-4x^2 = 9-25
-4x^2= - 16 умножим на минус один
4x^2=16 делим на четыре
x^2=4
x= +-2
ответ: 1) x=2, y=5
2) x= -2, y=5
3)x= -2, y= -5
4) x=2, x= -2, y= -5
(перед тем, как я отвечу хочу попросить вас подписаться, так я смогу отвечать на ваши вопросы всегда и , оцените это решение! )
«теоремы виета»
примеры:
x2 + 7x + 12 = 0 — это квадратное уравнение;
x2 − 5x + 6 = 0 — тоже ;
2x2 − 6x + 8 = 0 — а вот это нифига не , поскольку коэффициент при x2 равен 2.
~разумеется, любое квадратное уравнение вида ax2 + bx + c = 0 можно сделать — достаточно разделить все коэффициенты на число a. мы всегда можем так поступить, поскольку из определения квадратного уравнения следует, что a ≠ 0.
разделим каждое уравнение на коэффициент при переменной x2. получим:
3x2 − 12x + 18 = 0 ⇒ x2 − 4x + 6 = 0 — разделили все на 3;
−4x2 + 32x + 16 = 0 ⇒ x2 − 8x − 4 = 0 — разделили на −4;
1,5x2 + 7,5x + 3 = 0 ⇒ x2 + 5x + 2 = 0 — разделили на 1,5, все коэффициенты стали целочисленными;
2x2 + 7x − 11 = 0 ⇒ x2 + 3,5x − 5,5 = 0 — разделили на 2. при этом возникли дробные коэффициенты.
надеюсь, я вам !
Поделитесь своими знаниями, ответьте на вопрос:
Автобус проехал в первый час 2/7 всего пути, во второй час 1/5всего пути, а в третий час-оставшуюся часть пути.сколько километров проехал автобус за эти 3 часа , если известно, что в первый час он проехал на 40 километровменьше, чем в третий час? нужно решеное
все расстояние s
1час=2/7*s
2 час=1/5 s
3 час =s-(2/7*s+1/5*s)=s - 17/35*s=18/35*s
2/7*s+40=18/35*s (так как в первый час проехал на 40 км больше)
40=18/35*s-2/7*s=8/35*s
s=40: 8/35=40*35/8=5*35=175 км
ответ: 175 км всего