a) Равные отрезки по осям - треугольник равносторонний.
b) По разности координат находим длины сторон треугольника.
А(2; 0; 5), В(3; 4; 0), С(2; 4; 0)
Квадрат Сторона
AB = √((xB-xA)²+(yB-yA)²+(zB-zA)²) = 1 16 25 42 6,480740698
BC = √((xC-xB)²+(yC-yB)²+(zC-zB)²) = 1 0 0 1 1
AC = √((xC-xA)²+(yC-yA)²+(zC-zA)²) = 0 16 25 41 6,403124237 .
По теореме косинусов находим углы:
Полупериметр р= 6,941932468 .
cos A = 0,98802352 cos B = 0,15430335 cos C = 0
A = 0,15492232 В = 1,415874007 С = 1,570796327 это радианы
8,876395081 81,12360492 90 это градусы.
Треугольник прямоугольный.
Можно было определить и по сумме квадратов сторон:
ВС^2 + AC^2 = AB^2.
Объяснение:
cos^2 a = 1 - sin^2 a
cos a = ±√ (1 - sin^2 a )
В первой четверти косинус положителен, значит:
cos a = √ (1 - sin^2 a )
cos a = √ (1 - 25/169)
cos a = √ 144/169
cos a = 12/13
Тогда тангенс (отношение синуса к косинусу) равен:
tg a = (5/13)/(12/13) = 5/12
ответ: cos a = 12/13, tg a = 5/12.
2 вариант (если угол альфа расположен во второй четверти) .
Используем основное тригонометрическое тождество:
cos^2 a = 1 - sin^2 a
cos a = ±√ (1 - sin^2 a )
Во второй четверти косинус отрицателен, значит:
cos a = - √ (1 - sin^2 a )
cos a = - √ (1 - 25/169)
cos a = - √ 144/169
cos a = - 12/13
Тогда тангенс (отношение синуса к косинусу) равен:
tg a = (5/13)/(-12/13) = - 5/12
ответ: cos a = - 12/13, tg a = - 5/12.
cos^2 a = 1 - sin^2 a
cos a = ±√ (1 - sin^2 a )
Во второй четверти косинус отрицателен, значит:
cos a = - √ (1 - sin^2 a )
cos a = - √ (1 - 25/169)
cos a = - √ 144/169
cos a = - 12/13
Тогда тангенс (отношение синуса к косинусу) равен:
tg a = (5/13)/(-12/13) = - 5/12
ответ: cos a = - 12/13, tg a = - 5/12.
Поделитесь своими знаниями, ответьте на вопрос:
Докажите, что значение выражения 3(1-2y)(1+2y+4y в квадрате)+4(6у в кубе -1) не зависит от значения переменной
39(1+2y+4y^2-2y-4y^2-8y^3)+24y^3-4=3+6y+12y^2-6y-12y^2-24y^3+24y^3-4=3-4=-1