1. При каких значениях а уравнение sin ^2 x - (a+3) sin x + 3a = 0 не имеет решений ?
2. Решите уравнение cos ^2 x + cos 4x = a , если одно из его решений п/3
Участник Знаний
1. Квадратное уравнение не имеет решений, если его дискриминант отрицателен.
\sin^2x-(a+3)\sin x+3a=0\\\sin x=t,\;\sin^2x=t^2,\;-1\leq t\leq1\\t^2-(a+3)t+3a=0\\D=(-(a+3))^2-4\cdot1\cdot3a=(a+3)^2-12a=a^2-6a+9=(a-3)^2\\(a-3)^2
Последнее неравенство не имеет решений. Значит, исходное уравнение имеет решение (-ия) при любых а.
2.\;\cos^2x+\cos4x=a\\\cos4x=8\cos^4x-8\cos^2x+1\\\cos^2x+8\cos^4x-8\cos^2x+1=a\\8\cos^4x-7\cos^2x+(1-a)=0\\\cos^2x=t,\cos^4x=t^2,\;0\leq t\leq1\\8t^2-7t+(1-a)=0\\D=49-4\cdot8\cdot(1-a)=49-32+32a=17+32a\\t_{1,2}=\frac{7\pm\sqrt{17+32a}}{16}
Один из корней п/3, значит x=\frac\pi3\Rightarrow\cos x=\frac12\Rightarrow\cos^2x=t=\frac14
\frac{7\pm\sqrt{17+32a}}{16}=\frac14\Rightarrow\begin{cases}\frac{7+\sqrt{17+32a}}{16}=\frac14\\\frac{7-\sqrt{17+32a}}{16}=\frac14\end{cases}\Rightarrow\begin{cases}{7+\sqrt{17+32a}}=4\\{7-\sqrt{17+32a}}=4\end{cases}\Rightarrow\\
\Rightarrow\begin{cases}\sqrt{17+32a}=-3\\\sqrt{17+32a}=3\end{cases}\Rightarrow 17+32a=9\Rightarrow32a=-8\Rightarrow a=-\frac14=-0,25\\t_1=\frac{7+\sqrt{17-32\cdot0,25}}{16}=\frac{7+\sqrt{9}}{16}=\frac{10}{16}=\frac58\\t_2=\frac{7-\sqrt{17-32\cdot0,25}}{16}=\frac{7-\sqrt{9}}{16}=\frac{4}{16}=\frac14\\\cos^2x=\frac14\Rightarrow\cos x=\frac12\Rightarrow x=\frac\pi3+2\pi n,\;n\in\mathbb{Z}\\\cos^2x=\frac58\Rightarrow\cos x=\sqrt{\frac58}\Rightarrow x=\arccos\left(\sqrt{\frac58}\right)+2\pi n,\;n\in\mathbb{Z}
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Вравнобедренном треугольнике боковая сторона равна 13 дм и основание равно 1 дм. найдите: а)высоту этого треугольника, проведенную к основанию треугольника; б) площадь треугольника.
По этой теме план наших действий:
1) ищем производную
2) приравниваем её к нулю, решаем уравнение ( ищем критические точки)
3) смотрим: какие попали в указанный промежуток
4) ищем значения функции в этих точках и на концах промежутка
5) выбираем среди ответом нужные и пишем ответ
поехали?
1) f'(x) = 6x² + 6x - 36
2) 6x² + 6x - 36 = 0
x² + x - 6 = 0
по т. Виета х₁ = -3 и х₂ = 2
3) из этих корней в промежуток [ -2; 1] ни один корень
4) f(-2) = 2*(-2)³ + 3*(-2)² - 36*(-2) = 2*(-8) + 3*4 + 72 = -16 +12 +72 =
= 68
f(1) = 2*1 +3*1 -36*1 = -31
5) max f(x) = f(-2) = 68
min f(x) = f(1) = -31