На данном уроке мы познакомимся с одним из самых важных и наиболее распространенных приемов, который применяется в ходе решения неопределенных интегралов – методом замены переменной. Для успешного освоения материала требуются начальные знания и навыки интегрирования. Если есть ощущение пустого полного чайника в интегральном исчислении, то сначала следует ознакомиться с материалом Неопределенный интеграл. Примеры решений, где я объяснил в доступной форме, что такое интеграл и подробно разобрал базовые примеры для начинающих.
Технически метод замены переменной в неопределенном интеграле реализуется двумя :
– Подведение функции под знак дифференциала;
– Собственно замена переменной.
По сути дела, это одно и то же, но оформление решения выглядит по-разному.
Начнем с более простого случая.
Подведение функции под знак дифференциала
На уроке Неопределенный интеграл. Примеры решений мы научились раскрывать дифференциал, напоминаю пример, который я приводил:
То есть, раскрыть дифференциал – это формально почти то же самое, что найти производную.
Пример 1
Найти неопределенный интеграл. Выполнить проверку.
Смотрим на таблицу интегралов и находим похожую формулу: . Но проблема заключается в том, что у нас под синусом не просто буковка «икс», а сложное выражение. Что делать?
Подводим функцию под знак дифференциала:
Раскрывая дифференциал, легко проверить, что:
Фактически и – это запись одного и того же.
Но, тем не менее, остался вопрос, а как мы пришли к мысли, что на первом шаге нужно записать наш интеграл именно так: ? Почему так, а не иначе?
Формула (и все другие табличные формулы) справедливы и применимы НЕ ТОЛЬКО для переменной , но и для любого сложного выражения ЛИШЬ БЫ АРГУМЕНТ ФУНКЦИИ ( – в нашем примере) И ВЫРАЖЕНИЕ ПОД ЗНАКОМ ДИФФЕРЕНЦИАЛА БЫЛИ ОДИНАКОВЫМИ.
Поэтому мысленное рассуждение при решении должно складываться примерно так: «Мне надо решить интеграл . Я посмотрел в таблицу и нашел похожую формулу . Но у меня сложный аргумент и формулой я сразу воспользоваться не могу. Однако если мне удастся получить и под знаком дифференциала, то всё будет нормально. Если я запишу , тогда . Но в исходном интеграле множителя-тройки нет, поэтому, чтобы подынтегральная функция не изменилась, мне надо ее домножить на ». В ходе примерно таких мысленных рассуждений и рождается запись:
Теперь можно пользоваться табличной формулой :
Готово
Единственное отличие, у нас не буква «икс», а сложное выражение .
Выполним проверку. Открываем таблицу производных и дифференцируем ответ:
Получена исходная подынтегральная функция, значит, интеграл найден правильно.
Найти неопределенный интеграл.
:
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
1)закінчити речення щоб розкрити дужки перед якими стоїть знак плюс [мінус] треба.. 2) звести подібні доданки 5а-6а+7b-b [x-y+3x-2y] 3) записати суму 4x-5m+7x-12 [a+5-14a-12b] підкреслити подібні доданки 4) спростити вираз 2, 6с-5, 1а+1, 4с [-7, 5+3, 2m-2, 5а] .
решение:
(x^3 +5*x^2 – 4*x + 5) + (–x^3 + 3*x^2 – x + 2) =
x^3 +5*x^2 – 4*x + 5 – x^3 + 3*x^2 – x + 2 =
8*x^2 – 5*x + 7.
(x^3 +5*x^2 – 4*x + 5) - (–x^3 + 3*x^2 – x + 2) =
x^3 +5*x^2 – 4*x + 5 + x^3 - 3*x^2 + x – 2 =
2*x^3 + 2*x^2 -3*x +1.