1) Разложим числа на простые множители. Для этого проверим, является ли каждое из чисел простым (если число простое, то его нельзя разложить на простые множители, и оно само является своим разложением)
36 - составное число
24 - составное число
Разложим число 36 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
36 : 2 = 18 - делится на простое число 2
18 : 2 = 9 - делится на простое число 2
9 : 3 = 3 - делится на простое число 3.
Завершаем деление, так как 3 простое число
Разложим число 24 на простые множители и выделим их зелены цветом. Начинаем подбирать делитель из простых чисел, начиная с самого маленького простого числа 2, до тех пор, пока частное не окажется простым числом
24 : 2 = 12 - делится на простое число 2
12 : 2 = 6 - делится на простое число 2
6 : 2 = 3 - делится на простое число 2.
Завершаем деление, так как 3 простое число
2) Выделим синим цветом и выпишем общие множители
36 = 2 ⋅ 2 ⋅ 3 ⋅ 3
24 = 2 ⋅ 2 ⋅ 2 ⋅ 3
Общие множители (36 ; 24) : 2, 2, 3
3) Теперь, чтобы найти НОД нужно перемножить общие множители
ответ: НОД (36 ; 24) = 2 ∙ 2 ∙ 3 = 12
№2
1) Найдем все возможные делители чисел (36 ; 24). Для этого поочередно разделим число 36 на делители от 1 до 36, число 24 на делители от 1 до 24. Если число делится без остатка, то делитель запишем в список делителей.
Для числа 36 выпишем все случаи, когда оно делится без остатка:
36 : 1 = 36;36 : 2 = 18;36 : 3 = 12;36 : 4 = 9;36 : 6 = 6;36 : 9 = 4;36 : 12 = 3;36 : 18 = 2;36 : 36 = 1;
Для числа 24 выпишем все случаи, когда оно делится без остатка:
24 : 1 = 24;24 : 2 = 12;24 : 3 = 8;24 : 4 = 6;24 : 6 = 4;24 : 8 = 3;24 : 12 = 2;24 : 24 = 1;
2) Выпишем все общие делители чисел (36 ; 24) и выделим зеленым цветом самы большой, это и будет наибольший общий делитель НОД чисел (36 ; 24)
Общие делители чисел (36 ; 24): 1, 2, 3, 4, 6, 12
ответ: НОД (36 ; 24) = 12
222.
Объяснение:
P = 44см
a - b = 2см
a∠b = 60°
Для начала мы можем найти стороны a и b параллелограмма. Мы знаем, что периметр это удвоенная сумма его смежных сторон, так что 2(a+b)=44. Следовательно:
a + b = 22
a - b = 2
Получили систему уравнений, которую можно решить, например, сложением.
a + a + b - b = 22 + 2
2a = 24, a = 12, b = 10
Проверяем: 12 + 10 = 22, 12 - 10 = 2.
Теперь когда мы знаем обе стороны, можем найти меньшую диагональ по формуле:
d = √(a^2 + b^2 - 2ab·cosβ) = √(144 + 100 - 44*1/2) = √(222)
Поскольку нам нужно найти ее квадрат, корень в конце можем не брать, а 222 и будет ответом.
Поделитесь своими знаниями, ответьте на вопрос:
Найдите 3cosa - 4sina / 2sina - 5cosa, если tga=3
3cosa-4sina/2sina-5cosa
tga=sina/cosa=3
sina=3cosa
3cosa-12cosa/6cosa-5cosa=-9cosa/cosa=-9
ответ -9