для начала вспомним, что тупой угол - это угол с градусной мерой больше 90° и меньше 180°. из одной точки можно пустить три луча, которые между собой образуют 3 тупых угла. пустим 4-й луч вблизи одного из трёх лучей, у нас добавится дополнительно 2 тупых угла. 5-й луч пустим вблизи второго из числа первых трёх, дополнительно образуются 3 тупых угла. наконец, пускаем 6-й луч вблизи третьего, получив дополнительно 4 тупых угла. у нас будет получаться как бы три пучка близко расположенных лучей в каждом пучке. считаем сколько получилось тупых углов после к первым трём лучам ещё трёх лучей. 3 луча было, плюс 2, плюс 3 и плюс 4, всего 12 лучей. итак, для 3-х лучей - 3 тупых угла; для 6 лучей - 12 тупых углов. рассуждаем аналогично, добавляя по очереди ещё 3 луча. добавятся сначало 4 угла, затем 5 и, наконец, 6; т.е. всего добавится 15 тупых углов. а всего для 9 лучей будет 27 тупых углов. точно также, считая для 12 лучей, получим дополнительно 6+7+8 = 21 тупых угла, а всего - 48. можно было бы и далее продолжать таким способом, но мы замечаем закономерность. пусть а1 = 3 - это первый член последовательности. используя предыдущее значение (рекуррентно), можно вычислить следующее значение по формуле: , где n - число лучей кратное 3. пробуем вычислить по этой формуле: итак, ответ найден. для 27 лучей возможно максимум 243 тупых угла. так считать долго, можно увидеть формулу для прямого расчёта: по этой формуле можно считать для любого количества лучей, кратное трём.
В решении.
Объяснение:
График функции, заданной уравнением у=(a +1)x + a - 1 пересекает ось абсцисс в точке с координатами (-5; 0).
а) Найдите значение а:
Подставить известные значения х и у (координаты точки) в уравнение, вычислить а:
у = (а + 1)х + а - 1
0 = (а + 1)*(-5) + а - 1
0 = -5а - 5 + а - 1
0 = -4а - 6
4а = -6;
а = -6/4 (деление);
а = -1,5;
б) запишите функцию в виде у=kx + b;
Коэффициент k = (а + 1) = -1,5 + 1 = -0,5;
k = -0,5;
b = (а - 1) = -1,5 - 1
b = -2,5;
Уравнение функции:
у = -0,5х - 2,5.
Поделитесь своими знаниями, ответьте на вопрос:
s = a b /2b = 2s/aплощадь квадрата, построенного на гипотенузе треугольника с^2 = a^2 + b^2 = a^2 + (2s/a)^2ищем производную d(c^2) / da = 2a + 4s^2 *(-2/a^3) = 02a^4 - 8s^2 = 0a^2 = 12b^2 =(2s/a)^2 = 4*36/12 = 12c^2 = a^2 + b^2 = 24