Для определения генотипа короткостебельного устойчивого к ржавчине растения провели анализирующее скрещивание с длинностебельным растением, неустойчивым к ржавчине. В результате в поколении появилось две фенотипические группы: короткостебельные и длинностебельные устойчивые к ржавчине растения. Составьте схему решения задачи. Определите генотипы родителей и потомства. Объясните, растение с каким генотипом всегда используется для анализирующего скрещивания и почему.
А-короткостебельныйа-длинностебельныйВ-устойчив. к ржавчине.b-не устойчив. P AaBB aabbG AB, aB + abF1 AaBb aaBbРасщипление по фенотипу и генотипу 1:1 (анализирующее скрещивание)Поделитесь своими знаниями, ответьте на вопрос:
Чому деякі рослини живляться готовими органічними речовинами, які отримують від інших рослин?Наведіть приклади таких рослин.
При рассмотрении двух систем с различной концентрацией осмотически активных веществ следует, что выравнивание концентраций в системе 1 и 2 возможно только за счет перемещение воды. В системе 1 концентрация воды выше, поэтому поток воды направлен от системы 1 к системе 2. По достижении равновесия реальный поток будет равен нулю.
Растительную клетку можно рассматривать как осмотическую систему. Клеточная стенка, окружающая клетку, обладает определенной эластичностью и может растягиваться. В вакуоли накапливаются растворимые в воде вещества (сахара, органические кислоты, соли), которые обладают осмотической активностью. Тонопласт и плазмалемма выполняют в данной системе функцию полупроницаемой мембраны, поскольку эти структуры избирательно проницаемы, и вода проходит через них значительно легче, чем вещества, растворенные в клеточном соке и цитоплазме. В связи с этим, если клетка попадает в окружающую среду, где концентрация осмотически активных веществ будет меньше по сравнению с концентрацией внутри клетки (или клетка помещена в воду), вода по законам осмоса должна поступать внутрь клетки.
Возможность молекул воды перемещаться из одного места в другое измеряется водным потенциалом (Ψв). По законам термодинамики вода всегда движется из области с более высоким водным потенциалом в область с более низким потенциалом.
Водный потенциал (Ψв) – показатель термодинамического состояния воды. Молекулы воды обладают кинетической энергией, в жидкости и водяном паре они беспорядочно движутся. Водный потенциал больше в той системе, где выше концентрация молекул и больше их общая кинетическая энергия. Максимальным водным потенциалом обладает чистая (дистиллированная) вода. Водный потенциал такой системы условно принят за нуль.
Единицей измерения водного потенциала являются единицы давления: атмосферы, паскали, бары:
1 Па = 1 Н/м2 (Н- ньютон); 1 бар=0,987 атм =105 Па=100 кПА;
1 атм =1,0132 бар; 1000 кПа = 1 МПа
При растворении в воде другого вещества, понижается концентрация воды, уменьшается кинетическая энергия молекул воды, снижается водный потенциал. Во всех растворах водный потенциал ниже, чем у чистый воды, т.е. в стандартных условиях он выражается отрицательной величиной. Количественно это понижение выражают величиной, которая называется осмотическим потенциалом (Ψосм.). Осмотический потенциал – это мера снижения водного потенциала за счет присутствия растворенных веществ. Чем больше в растворе молекул растворенного вещества, тем осмотический потенциал ниже.
При поступлении воды в клетку ее размеры увеличиваются, внутри клетки повышается гидростатическое давление, которое заставляет плазмалемму прижиматься к клеточной стенке. Клеточная оболочка, в свою очередь, оказывает противодавление, которое характеризуется потенциалом давления (Ψдавл.) или гидростатическим потенциалом, он обычно положителен и тем больше, чем больше воды в клетке.
Таким образом, водный потенциал клетки зависит от концентрации осмотически действующих веществ – осмотического потенциала (Ψосм.) и от потенциала давления (Ψдавл.).
При условии, когда вода не давит на клеточную оболочку (состояние плазмолиза или увядания), противодавление клеточной оболочки равно нулю, водный потенциал равен осмотическому:
Ψв. = Ψосм.
По мере поступления воды в клетку появляется противодавление клеточной оболочки, водный потенциал будет равен разности между осмотическим потенциалом и потенциалом давления:
Ψв.= Ψосм. + Ψдавл.
Разница между осмотическим потенциалом клеточного сока и противодавлением клеточной оболочки определяет поступление воды в каждый данный момент.
При условии, когда клеточная оболочка растягивается до предела, осмотический потенциал целиком уравновешивается противодавлением клеточной оболочки, водный потенциал становиться равным нулю, вода в клетку перестает поступать:
- Ψосм. = Ψдавл., Ψв.= 0
Вода всегда поступает в сторону более отрицательного водного потенциала: от той системы, где энергия больше, к той системе, где энергия меньше.