Две прямые а и в пересекаются в точке О.Докажите, что все прямые, которые проходят не через точку О и пересекают каждую из данных прямых, лежат в одной плоскости
Доказательство.
Пусть прямая, не пересекающая точку О пересекает каждую из данных прямых. Поскольку обе данные прямые лежат в одной плоскости, то все точки, принадлежащие данным прямым, равно как и точки пересечения с третьей прямой лежат в одной плоскости.
Воспользуемся аксиомой стереометрии:
"Если две точки прямой лежат на одной плоскости, то все точки данной прямой лежат в этой плоскости."
Откуда проведенная нами прямая также лежит в данной плоскости.
Маргарита1091
31.05.2022
Першого та другого дня продали разом 256 кг моркви, а другого та третього дня разом продали 406 кг моркви. Скільки моркви продали кожного дня?
Розв'язання.
1 спосіб.
1) 500 – 256 = 244 (кг) – продали моркви третього дня.
2) 406 – 244 = 162 (кг) – продали другого дня.
3) 256 – 162 = 94 (кг) – продали першого дня.
2 спосіб.
1) 500 – 406 = 94 (кг) – продали моркви першого дня.
2) 256 – 94 = 162 (кг) – продали другого дня.
3) 406 – 162 = 244 (кг) – продали третього дня.
Відповідь: 94 кілограми, 162 кілограми, 244 кілограмів.
Olgera1
31.05.2022
На малюнках я бачу багато дітей. Вони живуть у різних сім’ях. Діти вчаться, займаються спортом, розважаються. За характером вони різні: цілеспрямовані та працелюбні, добрі та веселі, неслухняні, невиховані, дружні, недоброзичливі. Тому їхня поведінка відрізняється: на першому малюнку хлопчик, напевно, готує домашнє, на другому – дівчата вчаться кататися на коньках, на третьому – хлопчик, який зробив поганий вчинок, уважно слухає докори мами, на четвертому – школярі, які не вміють себе поводити в кінотеатрі, на п’ятому – дівчатка дружньо грають із м’ячем, усім цікаво та весело, на шостому – хуліган ображає дівчинку. На третьому, четвертому та шостому малюнках діти засмучують інших, завдають прикрощів та шкоди.
Пусть прямая, не пересекающая точку О пересекает каждую из данных прямых. Поскольку обе данные прямые лежат в одной плоскости, то все точки, принадлежащие данным прямым, равно как и точки пересечения с третьей прямой лежат в одной плоскости.
Воспользуемся аксиомой стереометрии:
"Если две точки прямой лежат на одной плоскости, то все точки данной прямой лежат в этой плоскости."
Откуда проведенная нами прямая также лежит в данной плоскости.