Дано: правильная треугольная призма, все ребра равны a. Четыре вершины призмы лежат в плоскости основания конуса, а две другие — на его боковой поверхности. Образующая конуса составляет с плоскостью основания угол ϕ.
Решение:
Проведем сечение через вершину конуса и вершины призмы, которые лежат на боковой поверхности конуса (считаем, что центр квадрата — грани призмы, лежащей на основании конуса, совпадает с центром основания конуса. В противном случае данных для решения задачи недостаточно). Это осевое сечение. Здесь A1K1 = AK — есть высота в грани призмы, которая представляет собой равносторонний треугольник
Дано: из точки поверхности шара проведены три равные хорды под углом α одна к другой, радиус шара равен R.
Найти: длину хорд.
Решение:
Соединим попарно концы хорд. Получим вписанную в шар треугольную пирамиду. Поскольку боковые грани — равные треугольники (по 2 сторонам и углу между ними), то в основании пирамиды — равносторонний треугольник. Высота пирамиды падает в центр (т. пересечения высот, медиан, биссектрис) этого треугольника, т.к. вся фигура при повороте вокруг высоты на 120° переходит в себя же. Проведем сечение сферы и пирамиды плоскостью, проходящей через одну из хорд и высоту. Она пройдет также через центр сферы (см. замечание о сдвиге на 120°).
Здесь AA1 — хорда, O — центр шара, A1B — пересечение с основанием пирамиды (совпадает с высотой, медианой, биссектрисой этой грани, т.к. высота падает эту ...), AK — высота пирамиды и ΔA1AB
Поделитесь своими знаниями, ответьте на вопрос:
Округлите дроби до сотен: 1) 202, 6; 2) 102, 32; 3) 570, 666; 4) 125, 6589.
1) ≈ 202,6 200; 3) 570666 ≈ 600;
2) ≈ 102,32 100; 4) ≈ 100 125,6589.