irinasolodova3
?>

Два человека одинаковой массы лежат: первый — на полу, второй — на мягком диване. какой из них оказывает большее давление? выберите правильное утверждение. a. первый. б. второй. b. оба оказывают одинаковое давление. мальчик, загоравший лежа на камушках на берегу моря, перелег на надувной матрас. выберите правильное утверж¬дение. a. давление мальчика на матрас больше, чем когда он лежал на камушках. б. площадь опоры мальчика уменьшилась. b. силы давления на камушки и на матрас одинаковы.

Физика

Ответы

Владимирович
1.B) Оба оказывают одинаковое давление.
2.A) Давление мальчика на матрас больше, чем когда он лежал на камушках.                                                                                                                           
mtcover

1) Заметим, что какая бы ни была цепочка, если сопротивления всех ее звеньев увеличить вдвое, ее эквивалентное сопротивление также возрастет вдвое.

Заметим что наша цепочка это три последовательных резистора r, и паралелльно к ней присоединенная такая же бесконечная цепочка, но с удвоенным сопротивлением.

Поэтому

1/R = 1/(3r) + 1/(2R)

1/(2R) = 1/(3r)

R= 1.5 r

2) Откинем два крайних резистора пока

Обозначим ток, ушедший в первый горизонтальный резистор как A1, а ток ушедший в первый вертикальный резистор как B1, во второй горизонтальный A2, во второй вертикальный B2 и т д. Для любого звена с номером n имеем два правила Кирхгофа

A_n = B_{n+1} + A_{n+1}\\-B_n+A_n + B_{n+1} = 0

Отсюда

A_{n+1} = 2A_n - B_n\\B_{n+1} = B_n - A_n

Пусть полный ток I в первом звене разделился как

A_1 = kI\\B_1 = (1-k)I

Посчитаем несколько первых звеньев по полученному правилу

A_2 = (3k-1)I; \quad B_2 = (1-2k)I\\A_3 = (8k-3)I; \quad B_3 = (2-5k)I\\A_4 = (21k-8)I; \quad B_4 = (5-13k)I\\A_5 = (55k-21)I; \quad B_5 = (13-34k)I

Заметим что коэффициенты при k в скобках и свободные члены это все числа Фибоначчи! Причем множитель при k это число Фибоначчи с номером на 2 большим, чем соответствующий свободный член.

При стремлении n к бесконечности, отношение коэффициента при k и свободного члена стремится к Ф^2, где число Ф = (1+√5)/2 - золотое сечение. Если k не будет равен 1/Ф^2, мы получим в итоге неограниченный рост токов при стремлении n к бесконечности, чего не может быть. Для компенсации растущих чисел Фибоначчи мы понимаем что k может быть только равен 1/Ф^2.

Теперь вспомним про два крайних резистора и посчитаем перепад напряжения от A к B идя по самому нижнему контуру (по последнему вертикальному резистору течет нулевой ток)

U = IR + (1-k)IR + IR = IR(3-k) = IR(3-\varphi^2)\\R_\text{eff} = U/I = R(3-\varphi^2)

Где φ = 1/Ф = (1-√5)/2 ≈0.618

shturman-765255

1) Заметим, что какая бы ни была цепочка, если сопротивления всех ее звеньев увеличить вдвое, ее эквивалентное сопротивление также возрастет вдвое.

Заметим что наша цепочка это резистор r, резистор r и паралелльно к нему присоединенная такая же бесконечная цепочка, но с удвоенным сопротивлением, и еще резистор r

Поэтому

\displaystyle R = 2r + \frac{2Rr}{2R+r}\\(R-2r)(2R+r) = 2Rr\\R^2-5Rr-2r^2 = 0\\D = 33r^2\\R = \frac{5+\sqrt{33}}{2}r

2) Обозначим ток, ушедший в первый горизонтальный резистор как A1, а ток ушедший в первый вертикальный резистор как B1, во второй горизонтальный A2, во второй вертикальный B2 и т д. Для любого звена с номером n имеем два правила Кирхгофа

A_n = B_{n+1}+A_{n+1}\\-B_n + A_n + B_{n+1}=0

Отсюда

A_{n+1} = 2A_n - B_n\\B_{n+1} = B_n-A_n

Посчитаем несколько первых звеньев по полученному правилу

A_2 = (3k-1)I;\quad B_2 = (1-2k)I\\A_3 = (8k-3)I;\quad B_3 = (2-5k)I\\A_4 = (21k-8)I;\quad B_4 = (5-13k)I\\A_5 = (55k-21)I;\quad B_5 = (13-34k)I

Заметим что коэффициенты при k в скобках и свободные члены это все числа Фибоначчи! Причем множитель при k это число Фибоначчи с номером на 2 большим, чем соответствующий свободный член.

При стремлении n к бесконечности, отношение коэффициента при k и свободного члена стремится (как отношение двух чисел Фибоначчи с номерами n и n+2) к Ф^2, где число Ф = (1+√5)/2 - золотое сечение. Если k не будет равен 1/Ф^2, мы получим в итоге неограниченный рост токов при стремлении n к бесконечности, чего не может быть. Для компенсации растущих чисел Фибоначчи мы понимаем что k может быть только равен 1/Ф^2.

Теперь вспомним про два крайних резистора и посчитаем перепад напряжения от A к B идя по нижнему контуру. Заметим, что по последнему вертикальному резистору равен полному току I, так как через бесконечную горизонтальную цепочку к "последнему" резистору ничего не притечет, и все будет течь по нижнему контуру. Полный ток течет также через самые крайние резисторы. Поэтому

U = IR + (1-k)IR + IR +IR = (4-k)IR\\R_\text{eff} = U/I = (4-k)R = (4-\frac{(\sqrt{5}-1)^2}{4})R = \frac{5+\sqrt{5}}{2} R

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Два человека одинаковой массы лежат: первый — на полу, второй — на мягком диване. какой из них оказывает большее давление? выберите правильное утверждение. a. первый. б. второй. b. оба оказывают одинаковое давление. мальчик, загоравший лежа на камушках на берегу моря, перелег на надувной матрас. выберите правильное утверж¬дение. a. давление мальчика на матрас больше, чем когда он лежал на камушках. б. площадь опоры мальчика уменьшилась. b. силы давления на камушки и на матрас одинаковы.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Александрович833
xcho1020
blizzardtap641
ver2bit
Alisa
AlekseiMardanova
ksenyabobrovich7214
myataplatinumb348
kv135549
Fetyukov
sahabiev1987
h777eta
sleek73
antoska391
lighturist