1) Изначально шар находится на некоторой высоте h1 с длиной нити l. Затем его опускают и в положении дальнейшего соударения с пулей шар имеет скорость V1. Запишем закон сохранения энергии:
Сокращаем m1. Рассмотрим cosα:
Откуда выводим h1:
Выводим из ЗСЭ V1, подставляя формулу для h1:
2) Закон сохранения импульса по горизонтали для пули и шара, спроецированный на некоторую ось ОХ, направленную в сторону движения пули, имеет вид:
,
где V1' - скорость шара после соударения с пулей. Выведем ее:
3) Закон сохранения энергии для шара после соударения с пулей:
При этом h2 аналогично h1 равен:
Перепишем ЗСЭ в виде:
Откуда cosβ:
°
dentalfamily
16.07.2020
При этом ударе (абсолютно неупругом) выполняется закон сохранение импульса. m1v1=(m1+m2)v2; Значит скорость сцепки после столкновения будет v2=m1v1/(m1+m2), а кинетическая энергия E=0.5(m1+m2)*((m1v1)/(m1+m2))^2; E=0.5(m1v1)^2 / (m1+m2); Сила трения равна F=U(m1+m2)g. Чтобы остановить сцепку, она должна совершить работу, равную кинетической энергии сцепки A=E. Так как работа равна силе, умноженной на перемещение A=FL, то путь до остановки сцепки равен L=E/F; (переведём скорость в м/с, разделив 12/3,6=3,(3) м/с) L=0.5(m1v1)^2 / (m1+m2)/(U(m1+m2)g); L=(0.5/Ug)*(m1v1)^2 /(m1+m2)^2; L=(0.5/(0.05*10))*(50000*3,33)^2 / (50000+30000)^2; L=2,3 м (округлённо).
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Автомобиль двигался равноускоренно и в течение 10 секунд его скорость увеличилась с пяти до 15 м секунду чему равно ускорение автомобиля
a=(15-5)/10=1m/c^2