znaberd786
?>

Ко дну сосуду с водой приморожен шарик из льда. как изменится уровень воды в сосуде, когда лед растает? изменится ли при этом сила давления воды на дно сосуда? объясните 2 вопрос,

Физика

Ответы

Жуков219
Уровень воды останется такой потому что лёд уже в воде 
нет давление не йзменится
smnra219
Плотность льда меньше плотности воды, поэтому когда лед растает, объем образовавшейся воды будет меньше. Следовательно, уровень воды понизится. Давление зависит от высоты жидкости, значит, оно тоже уменьшится. Сила давления, соответственно, тоже уменьшается.
ответ: уровень понизится, сила давления уменьшится
Dlyamila
• пусть основание всех наклонных плоскостей имеет длину b, а угол, который они составляют с этим основанием, равен α

• если длина плоскости L и тело скатывается без начальной скорости, то справедливо уравнение:

L= \frac{a t^{2} }{2}

○ поэтому время скатывания равно:

t= \sqrt{ \frac{2L}{a} }

• по определению cosα = b/L. значит, L = b/cosα (1)

• так как трение отсутствует, то ускорение телу сообщается только горизонтальной компонентой силы тяжести, то есть a = g sinα (2)

○ используя выражения (1) и (2), получаем для времени скатывания:

t= \sqrt{ \frac{2b}{gsin \alpha cos \alpha } }

• возьмем производную от t(α) и приравняем ее к нулю, дабы найти точки экстремума (предварительно упрощаю выражение):

t= \sqrt{ \frac{4b}{gsin2 \alpha } } \\ \\ \frac{1}{2\sqrt{ \frac{4b}{gsin2 \alpha } }} \frac{0-4gb(sin2 \alpha )'}{ g^{2} sin^{2}2 \alpha }=0 \\ \\ \frac{1}{2} \sqrt{ \frac{gsin2 \alpha }{4b} } \frac{-4gb2cos2 \alpha }{ g^{2} sin^{2}2 \alpha } =0 \\ \\ - \sqrt{ \frac{gsin2 \alpha }{b} } \frac{2bcos2 \alpha }{g sin^{2}2 \alpha } =0 \\ \\ - \frac{ \sqrt{sin2 \alpha }2 \sqrt{b}cos2 \alpha }{ \sqrt{g} sin^{2}2 \alpha } =0


данное равенство выполняется при sin(2α) ≠ 0 и cos(2α) = 0 (b и g равными нулю быть не могут). получаем простое тригонометрическое уравнение (k ∈ Z):

cos2 \alpha =0 \\ \\ 2 \alpha = \frac{ \pi }{2} + \pi k \\ \\ \alpha = \frac{\pi}{4}+ \frac{\pi k}{2}

ясно, что углы больше 90° мы не рассматриваем. поэтому α = 45°. область допустимых углов:

sin2 \alpha \neq 0 \\ \\ a \neq \frac{\pi k}{2}

то есть, α ≠ 90° и α ≠ 180°
Katkova
Время Δt складывается из времен подъема ракеты t1 до высоты h и спуска ступени t2 с этой высоты:

Δt = t1 + t2 (!)

если ракета начинала подъем без начальной скорости, то справедливо уравнение:

h = (a t1²)/2 = 2g t1²

поэтому время t1 равно:

t1 = √(h/(2g))

ракета, поднявшись на высоту h, приобретает скорость v = a t1 = 4g t1. такую же скорость по модулю, но обратную по направлению, приобретает ступень. для нее справедливо уравнение:

h = 4g t1 t2 + (g t2²)/2

перепишем квадратное уравнение относительно t2 в виде:

t2² + 8 t1 t2 - (2h)/g = 0

корень этого уравнения (отрицательный, разумеется, отбрасываю):

t2 = (-8 t1 + √(64 t1² + (8h)/g))/2

t2 = √(16 t1² + (2h)/g) - 4 t1

после ряда преобразований и подстановки выражения для t1 получаем:

t2 = √(h/g) * (√10 - √8)

вернемся к формуле (!):

Δt = √(h/(2g)) + √(h/g) * (√10 - √8)

нетрудно получить выражение для h:

h = (g Δt²)/(√(1/2) + √10 - √8)²

h = (9.8*40^(2))/(sqrt(0.5)+sqrt(10)-sqrt(8))^(2) ≈ 14470.389 м

h ≈ 14.47 км

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Ко дну сосуду с водой приморожен шарик из льда. как изменится уровень воды в сосуде, когда лед растает? изменится ли при этом сила давления воды на дно сосуда? объясните 2 вопрос,
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

gri-7410
Pavlovna-Golovitinskaya378
karavan85450
xobby18
Владислав-Аветисян217
pavlova7771960
Tatyana Anton1475
Andrei
Aleksei Biketova
zuzman601
Оксана
zubov-073620
Лилия-Карпухина337
armentamada1906
olgakozelskaa492