Метрическая система — общее название международной десятичной системы единиц, основанной на использовании метра и грамма. На протяжении двух последних веков существовали различные варианты метрической системы, различающиеся выбором основных единиц. В настоящее время международно признанной является система СИ.
Важнейшие достоинства Международной системы единиц
Наибольшее распространение во всем мире получила Международная система единиц. Основными достоинствами этой системы являются:
1. Универсальность – охват всех областей науки, техники и народного хозяйства.
2. Унификация единиц для всех видов измерений; так, вместо ряда единиц давления, например, атмосферы, миллиметры ртутного столба, миллиметры водяного столба в СИ применяется единая единица давления – паскаль, вместо ряда единиц работы и энергии – одна единица для измерения работы и всех видов энергии (в том числе и теплоты) – джоуль.
3. Применение удобных для практики основных и большинства производных единиц (например, площади – метр квадратный, объема – метр кубический, электрического напряжения – вольт и др.).
4. Когерентность (связность, согласованность) системы; коэффициенты пропорциональности в физических уравнениях, определяющих единицы производных величин, равны безразмерной единице.
5. Четкое разграничение в СИ единицы массы (килограмм) и силы (ньютон).
6. Лучшее взаимопонимание при дальнейшем развитии научно-технических и экономических связей между различными странами.
Поделитесь своими знаниями, ответьте на вопрос:
1. березовые дрова объемом 400 см³ сгоратот в печи. сколько энергии при этом выделяется? плотность березовой древесины 700 кг/м³, удельная теплота сгорания 13 •10⁶дж/(кг •°с), 2. лед массой 4 кг взяли при температуре -20 °с, превратили воду при температуре 0 °с. какоеколичество теплоты перешло во внутренного энергию? удельная теплота плавления 33•10 дж/кг, удельная теплоемкость льда 2100 дж/(кг •°с), 3. какую массу воды можно нагреть на 10 °c, если считать, что вся энергия, выделяюшаяся присжигании 10г керосина, идет на нагревание? удельная теплоемкость волы 4200 дж/(кг•°с), удельнаятеплота сгорания керосина 46•10⁶ дж/кг.
Пройденный путь 8,5 м; модуль перемещения 2,5 м;
1-й этап движения
t₀ = 0; v₀ = 2 м/с;
t₁ = 1 с; v₁ = 3 м/с
Расчёт:
Δt₁ = t₁ - t₀ = 1 - 0 = 1 (c);
Δv₁ = v₁ - v₀ = 3 - 2 = 1 (м/c);
На 1-м этапе движение равноускоренное с ускорением
по закону
x₁(t) = 2t + 0.5t²
Считаем, что в начальный момент движения координата x₁(0) = 0
В момент времени t₁ = 1 c координата x₁(1) = 2·1 + 0.5·1² = 2.5 (м)
Движение происходит в сторону увеличения координаты.
Перемещение
r₁ = x₁(1) - x₁(0) = 2.5 - 0 = 2.5 (м)
Пройденный путь за этап
2-й этап движения
t₁ = 1 с; v₁ = 3 м/с
t₂ = 3 с; v₂ = 0;
Расчёт:
Δt₂ = t₂ - t₁ = 3 - 1 = 2 (с);
Δv₂ = v₂ - v₁ = 0 - 3 = -3 м/c;
На 2-м этапе движение равнозамедленное с ускорением
по закону
x₂(t) = 2.5 + 3 · (t - t₁) - 0.75 · (t - t₁)²
В момент времени t₂ = 3 c координата
x₂(3) = 2.5 + 3 · 2 - 0.75 · 2² = 5.5 (м)
Движение происходит в сторону увеличения координаты.
Перемещение к концу этапа
r₂ = x₂(3) - x₁(0) = 5.5 - 0 = 5.5 (м)
Пройденный путь за этап
Пройденный путь за 2 этапа
3-й этап движения
t₂ = 3 с; v₂ = 0;
t₃ = 6 с; v₃ = -1 м/с
Расчёт:
Δt₃ = t₃ - t₂ = 6 - 3 = 3 (с);
Δv₃ = v₃ - v₂ = -1 - 0 = -1 м/c;
На 3-м этапе движение равноускоренное с ускорением
по закону
В момент времени t₃ = 6 c координата
Движение происходит в сторону уменьшения координаты.
Перемещение к концу этапа
r₃ = x₃(6) - x₁(0) = 4 - 0 = 4 (м)
Пройденный путь за этап
Пройденный путь за 3 этапа
4-й этап движения
t₃ = 6 с; v₃ = -1 м/с
t₄ = 9 с; v₄ = 0;
Расчёт:
Δt₄ = t₄ - t₃ = 9 - 6 = 3 (с);
Δv₄ = v₄ - v₃ = 0 + 1 = 1 м/c;
На 3-м этапе движение равнозамедленное с ускорением
по закону
В момент времени t₄ = 9 c координата
Движение происходит в сторону уменьшения координаты.
Перемещение к концу этапа
r₄ = x₄(9) - x₁(0) = 2.5 - 0 = 2.5 (м)
Пройденный путь за этап
Путь, пройденный за всё время движения