Для начала вспомним формулу кинетической энергии:
Е=
(1) Представим, что мы бросаем этот мяч. Он летит, потом "останавливается" где-то в высшей точке, а потом уже летит вниз. Логично, что если он "останавливается", т.е. не двигается, то и скорость его = 0, следует, по формуле, что кинетическая = 0. ответ 3 верный.
(2) У мяча, пока он летит, скорость не постоянна, иначе как бы он остановился, (так-то еще существуют формулы для свободного падения), значит, что в какой-то момент скорость была наибольшей, а затем начала уменьшаться. Понятно, что скорость максимальна в момент броска. Значит, по формуле кинетическая будет тоже максимальна. ответ 1 неверный.
Неправильность остальных ответов можно объяснить следствиями (2).
1) приборы: брусок с разными шириной и высотой; деревянная дощечка длиннее, чем брусок раз в 5; динамометр.
2) положим брусок на дощечку, лежащую на столе.
3) прикрепим к бруску динамометр.
4) будем двигать брусок, тянуть за динамометр. Надо при так, чтобы брусок двигался равномерно хоть 2 секунды. Тогда динамометр покажет силу трения. Они в сумме = 0 и ускорения нет. Стрелка динамометра при этом не дрожит. Не бойтесь увеличить скорость.
5) перевернем брусок на бок. Площадь соприкосновения изменится, а показания динамометра НЕТ.
6) Найдем силу тяжести бруска F=mg, взвесив его на динамометре. Вычислим коэфф. трения
k=Fтр/N=Fтр/mg; у нас реакция опоры N численно = mg.
Вывод: сила трения и коэффициент трения k=Fтр/N=Fтр/mg не зависят от площади соприкасающихся поверхностей.
Поделитесь своими знаниями, ответьте на вопрос:
Какую силу давления испытывает водолазный скафандр площадью 4 м2 при погружении водолаза в пресноводный водоем на глубину 300 м? можно подробное решение.