Поделитесь своими знаниями, ответьте на вопрос:
Очень нужно 1. На нерухомий атом Гідрогену налітає другий атом Гідрогену, який також був у незбудженому стані. Чи зможуть вони після взаємодії перейти у збуджений стан? Від чого це залежить? А. Можуть, за рахунок кінетичної енергії другого атома Б. Не можуть, внаслідок збільшення потенціальної енергії взаємодії В. Не можна відповісти однозначно, оскільки, це залежить від зовнішніх факторів 2. Яке з наведених висловлювань правильно описує здатність атома до випромінювання і поглинання фотонів світла під час переходів між двома різними стаціонарними станами? А. Може поглинати і випромінювати фотони будь-якої частоти Б. Може поглинати фотони будь-якої частоти, а випромінювати фотони будь-які частоти В. Може поглинати і випромінювати фотони тільки певної частоти, частота фотонів світла, що випромінюється і поглинається, різна Г. Може поглинати і випромінювати фотони тільки певної частоти, частота фотонів світла, що випромінюються і поглинаються, однакова
W = mgh.
При малых смещениях можно считать, что амплитуда колебаний по дуге желоба l равна проекции этой дуги на горизонталь X0. Из прямоугольного треугольника, образованного радиусом желоба R, амплитуды горизонтального смещения X0 и проекции крайнего положения шарика на вертикаль (R-h) следует:
X0^2 + (R-h)^2 = R^2
Отсюда получим: X0^2 = 2*R*h - h^2
Учитывая, что при малых колебаниях h^2 << 2*R*h
X0^2 = 2*R*h
Таким образом, получаем выражение для h через амплитуду X0 при малых отклонениях от положения равновесия:
h = X0^2/2R
Потенциальная энергия, максимальная при крайнем положении шарика обретает вид:
W = m*g*X0^2/2R
Теперь получим значение максимальной кинетической энергии шарика (при прохождении положения равновесия). Она равна:
T = m*V0^2/2 + I*Omega^2/2
поскольку, коль шарик катится по жёлобу без проскалзывания, мы должны, помимо кин энергии поступательного движения шарика массы m, учитывать ещё и энергию вращения шарика с моментом инерции I и угловой скоростью вращения шарика вокруг его собственной оси Omega.
При этом максимальная линейная скорость шарика
V0 = Omega*r, где r = радиус шарика =>
Omega = V0/r
T = m*V0^2/2 + I*(V0/r)^2/2
Если шарик совершает гармонические колебания по закону
x(t) = X0*Sin(omega*t) то его скорость должна меняться по закону
v(t) = x'(t) = omega*X0*Cos(omega*t)
Таким образом, максимальная линейная скорость шарика (амплитуда скорости) равна
V0 = omega*X0, где omega - циклическая частота колебаний шарика.
Выражение для максимальной кинетической энергии шарика принимает вид:
T = m*(omega*X0)^2/2 + I*(omega*X0)^2/(2r^2).
Поскольку момент инерции шарика радиуса r и массы m равен
I = (2/5)mr^2, то
T = m*(omega*X0)^2/2 + (2/5)mr^2*(omega*X0)^2/(2r^2) = (7/10)m*(omega*X0)^2
В колебательной системе максимальное значение потенциальной энергии W равно максимальной величине кинетической энергии T.
(7/10)m*(omega*X0)^2 = m*g*X0^2/2R
отсюда, сокращая в обеих частях равенства m и X0 получаем:
(7/5)*omega^2 = g/R
и окончательно
omega^2 = (5/7)*(g/R)
и
omega = sqrt(5g/7R).
Частота такого "маятника" niu = omega/2Pi
niu = sqrt(5g/7R)/2Pi
Период T = 1/niu = 2Pi*sqrt(7R/5g)