Самая мелкая птица - Калибри. ( В России Королик)
Какие вы знаете цветные моря? - Жёлтое море, красное, чёрное. Белое.
Из ядовитых ягод какого растения готовят лекарство, употребляемое при боль. сердца? - Ягоды вороньего глаза
Что общего у всадника и петуха? - шпоры
Самое глубокое озеро в мире - Байкал
Во время дождя под каким кустом сидел заяц? - под мокрым
Какой снег быстро тает, чистый или грязный? - грязный.
Какая птица выводит птенцов даже в любые морозы? - Клест.
Какое топливо добывают в болоте? - торф
У каких растений нет корней - Водоросли.
Объяснение: Ы.
Шаг 1. Пусть начало отсчета совпадает с мотоциклистом. Ось X направим вдоль дороги от мотоциклиста в сторону велосипедиста, как показано на рис. 39. В качестве единицы длины выберем 1 м. Часы (секундомер) включим в момент начала наблюдения.
Движение велосипедиста относительно мотоциклиста
Шаг 2. Найдем начальную координату велосипедиста xв0 в момент времени t = 0. Видно, что в выбранной системе отсчета xв0 = 600 м, так как расстояние от начала отсчета (мотоциклиста) до велосипедиста l = 600 м.
Шаг 3. В выбранной системе отсчета мотоциклист неподвижен (так как он является началом отсчета и его координата все время равна xм = 0). Определим значение скорости велосипедиста. В выбранной системе отсчета Земля вместе с дорогой движутся в отрицательном направлении оси X со скоростью, имеющей значение Vз = -|vм| = -20 м/с. Велосипедист по условию задачи движется относительно Земли также в отрицательном направлении оси X (навстречу мотоциклисту) со скоростью, имеющей значение vв = -10 м/с. Значит, относительно выбранной системы отсчета (мотоциклиста) велосипедист будет двигаться со скоростью, значение которой равно Vв = Vз + vв = (-20) + (-10) = -30 м/с. Напомним, что здесь, как и в предыдущем параграфе, мы обозначаем буквами v значения скоростей относительно Земли, а значения скоростей тел в выбранной системе отсчета – большими буквами V.
Шаг 4. Запишет законы движения мотоциклиста и велосипедиста:
xм = 0
xв = xв0 + Vв · t = 600 - 30 · t.
Шаг 5. Представим в виде уравнения условие задачи, т. е. условие встречи мотоциклиста и велосипедиста. Как вы помните, это условие означает равенство координат движущихся навстречу друг другу тел. Поэтому
xв = xм.
Шаг 6. Объединим полученные уравнения, присвоив каждому из них номер и название:
xм = 0 (1) (закон движения мотоциклиста)
xв = 600 - 30 · t, (2) (закон движения велосипедиста)
xв = xм. (3) (условие встречи)
Шаг 7. Решим полученные уравнения, подставив в условие встречи (3) координаты xм и xв из уравнений (1) и (2):
0 = 600 - 30 · t,
tвстр = t = 600/30 = 20 (с).
Таким образом, встреча произойдет через 20 с.
Обратим внимание на существенное отличие данного решения от , которым мы решали задачу «встреча» раньше. Оно заключается в том, что теперь, когда мы связали систему отсчета с одним из движущихся тел, закон его движения стал очень простым: xм(t) = 0. Это существенно упростило решение уравнений. Особенно важно это будет в дальнейшем, когда тела в задачах будут двигаться намного сложнее.
Упражнения
1. Заметим, что начиная с шага 4 мы могли бы решить рассмотренную только что задачу и графическим . Это сделано на рис. 40. Объясните, что изображено на этом рисунке.
График движения велосипедиста
2. Решите задачу, изображенную на рис. 38, в системе отсчета, связанной с велосипедистом. (Особое внимание уделите вопросам: куда направить координатную ось? Куда и с какой скоростью в этой системе отсчета будут двигаться Земля и мотоциклист?)
Поделитесь своими знаниями, ответьте на вопрос:
Идеальный газ находится в сосуде при t=17 градусов цельсия под давление 10^5 па, то концентрация молекул равна
T=290 K p=10^5 Па k=1.38*10^-23 n=?
===
p=n*k*T
n=p/(k*T)=10^5/(1.38*10^-23*290)=2.5*10^25 [1/м³]