Исходные данные:
Скорость потока жидкости W = 2,0 м/с;
диаметр трубы d = 100 мм;
общий напор Н = 8 м;
относительная шероховатость 4·10-5.
Решение задачи:
Согласно справочным данным в трубе диаметром 0,1 м коэффициенты местных сопротивлений для вентиля и выхода из трубы составляют соответственно 4,1 и 1.
Значение скоростного напора определяется по соотношению:
w2/(2·g) = 2,02/(2·9,81) = 0,204 м
Потери напора воды на местные сопротивления составят:
∑ζМС·[w2/(2·g)] = (4,1+1)·0,204 = 1,04 м
Суммарные потери напора носителя на сопротивление трению и местные сопротивления рассчитываются по уравнению общего напора для насоса (геометрическая высота Hг по условиям задачи равна 0):
hп = H - (p2-p1)/(ρ·g) - = 8 - ((1-1)·105)/(1000·9,81) - 0 = 8 м
Полученное значение потери напора носителя на трение составят:
8-1,04 = 6,96 м
Рассчитаем значение числа Рейнольдса для заданных условий течения потока (динамическая вязкость воды принимается равной 1·10-3 Па·с, плотность воды – 1000 кг/м3):
Re = (w·d·ρ)/μ = (2,0·0,1·1000)/(1·10-3) = 200000
Согласно рассчитанному значению Re, причем 2320 <Re< 10/e, по справочной таблице рассчитаем коэффициент трения (для режима гладкого течения):
λ = 0,316/Re0,25 = 0,316/2000000,25 = 0,015
Преобразуем уравнение и найдем требуемую длину трубопровода из расчетной формулы потерь напора на трение:
l = (Hоб·d) / (λ·[w2/(2g)]) = (6,96·0,1) / (0,016·0,204) = 213,235 м
ответ:требуемая длина трубопровода составит 213,235 м.
Поделитесь своими знаниями, ответьте на вопрос:
Вычислите ускорение, с которым падало тело массой 4кг с высоты 30м, если сила опоры за время падения выполнила работу 42дж. ускорение свободного падения 9.8 м/с^2
Для начала вспомним формулу кинетической энергии:
Е=
(1) Представим, что мы бросаем этот мяч. Он летит, потом "останавливается" где-то в высшей точке, а потом уже летит вниз. Логично, что если он "останавливается", т.е. не двигается, то и скорость его = 0, следует, по формуле, что кинетическая = 0. ответ 3 верный.
(2) У мяча, пока он летит, скорость не постоянна, иначе как бы он остановился, (так-то еще существуют формулы для свободного падения), значит, что в какой-то момент скорость была наибольшей, а затем начала уменьшаться. Понятно, что скорость максимальна в момент броска. Значит, по формуле кинетическая будет тоже максимальна. ответ 1 неверный.
Неправильность остальных ответов можно объяснить следствиями (2).