Чтобы решить данную задачу, мы можем воспользоваться законом Кулона. Закон Кулона гласит, что сила взаимодействия между двумя точечными зарядами прямо пропорциональна произведению этих зарядов и обратно пропорциональна квадрату расстояния между ними. Формула для вычисления силы взаимодействия между двумя зарядами выглядит следующим образом:
F = (k * q1 * q2) / r^2
где F - сила взаимодействия между зарядами,
k - постоянная Кулона (9 * 10^9 Н м^2/Кл^2),
q1 и q2 - заряды, в данном случае линейная плотность заряда стержня и точечный заряд соответственно,
r - расстояние между зарядами.
В данной задаче, первым шагом требуется вычислить линейную плотность заряда стержня, которая составляет 1,5 нКл/см. Но нам необходимо перевести это значение в СИ (систему международных единиц) - Кл/м.
Теперь мы можем перейти ко второму шагу, который состоит в вычислении расстояния между зарядами, указанным в задаче как "на продолжении оси стержня на расстоянии 12 см от его конца". Нам необходимо перевести это значение в метры:
12 см * 0,01 м/см = 0,12 м.
Теперь мы можем перейти к финальному шагу и подставить соответствующие значения в формулу для закона Кулона. Будем считать F положительной, если сила направлена к заряду стержня (притяжение) и отрицательной, если сила направлена в противоположном направлении (отталкивание).
F = (k * q1 * q2) / r^2
F = (9 * 10^9 Н м^2/Кл^2) * ((1,5 * 10^-7 Кл/м) * (0,2 * 10^-6 Кл/м))
/(0,12 м)^2
F ≈ 27 Н (возводим в квадрат расстояние)
Таким образом, сила взаимодействия между заряженным стержнем и точечным зарядом составляет примерно 27 Н.
sergeev-alp5
12.05.2022
Для того чтобы определить, какие из этих веществ будут плавать в ртути, необходимо сравнить их плотность с плотностью ртути.
Плотность ртути составляет 13600 кг/м3. Следовательно, все вещества, у которых плотность ниже 13600 кг/м3, будут плавать в ртути.
Сравнивая плотности веществ из таблицы с плотностью ртути, мы можем убедиться, что следующие вещества будут плавать в ртути:
1. Серебро (плотность 10500 кг/м3) - плотность серебра ниже плотности ртути, поэтому серебро будет плавать в ртути.
2. Свинец (плотность 11300 кг/м3) - плотность свинца также ниже плотности ртути, поэтому свинец будет плавать в ртути.
Остальные вещества - вольфрам (плотность 19000 кг/м3), золото (плотность 19300 кг/м3) и иридий (плотность 22400 кг/м3) имеют плотность выше плотности ртути, поэтому они не будут плавать в ртути.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Хлопчик, маса якого 55 кг, може піднятися по канату на висоту 6 м, розвиваючи потужність 357 Вт. Скільки часу йому для цього потрібно?
F = (k * q1 * q2) / r^2
где F - сила взаимодействия между зарядами,
k - постоянная Кулона (9 * 10^9 Н м^2/Кл^2),
q1 и q2 - заряды, в данном случае линейная плотность заряда стержня и точечный заряд соответственно,
r - расстояние между зарядами.
В данной задаче, первым шагом требуется вычислить линейную плотность заряда стержня, которая составляет 1,5 нКл/см. Но нам необходимо перевести это значение в СИ (систему международных единиц) - Кл/м.
1 нКл = 10^-9 Кл,
1 см = 0,01 м.
Поэтому:
1,5 нКл/см * 10^-9 Кл/нКл * 100 см/м = 1,5 * 10^-7 Кл/м.
Теперь мы можем перейти ко второму шагу, который состоит в вычислении расстояния между зарядами, указанным в задаче как "на продолжении оси стержня на расстоянии 12 см от его конца". Нам необходимо перевести это значение в метры:
12 см * 0,01 м/см = 0,12 м.
Теперь мы можем перейти к финальному шагу и подставить соответствующие значения в формулу для закона Кулона. Будем считать F положительной, если сила направлена к заряду стержня (притяжение) и отрицательной, если сила направлена в противоположном направлении (отталкивание).
F = (k * q1 * q2) / r^2
F = (9 * 10^9 Н м^2/Кл^2) * ((1,5 * 10^-7 Кл/м) * (0,2 * 10^-6 Кл/м))
/(0,12 м)^2
F ≈ 27 Н (возводим в квадрат расстояние)
Таким образом, сила взаимодействия между заряженным стержнем и точечным зарядом составляет примерно 27 Н.