1) Кладём линейку на карандаш как сказано в задании.
2) Возьмём четыре монеты по 1 рублю.
3) Кладём 1 монету на 4 см с одной стороны от точки опоры.
4) Кладём стопку из трёх монет на 1 см от точки опоры.
5) Если что-то где-то перевешивает чуть-чуть сдвигаем.
6) Собственно измеряем длину плеч, т.е. расстояние от точки опоры до монет с обеих сторон.
7) Правило рычага - рычаг находится в равновесии, когда силы, действующие на него обратно пропорциональны плечам этой силы.
F1/F2 = l2/l1
Подставляем числа и всё))
И я не вылитый художник ;)
Подробнее - на -
Объяснение:
Поделитесь своими знаниями, ответьте на вопрос:
Перечертите схемы рычагов в тетрадь и укажите на них плечи l₁, l₂.
Известно, что потенциальная энергия тела (заряда) может изменяться за счет работы по перемещению тела, совершаемой консервативной силой, действующей со стороны полям:
dA dWp
.
В электростатическом поле на заряд q со стороны поля действует
сила Кулона
F qE
. Тогда работа dA, совершаемая электрическим полем
E
, равна работе силы Кулона при малом перемещении
dl
в пространстве заряда q (рис. 3)
dA (F dl ) q(E dl ) q(E dx E dy E dz)
x y z
.
Работа dA, совершаемая потенциальным полем, приводит к изменению потенциальной энергии dWp заряженного тела
dz
z
dy
y
dx
x
dA dWp qd q .
Из сопоставления этих выражений для работы dA видно, что связь
между напряженностью и потенциалом электростатического поля имеет
вид
x
Ex
,
y
Ey
,
z
Ez
или
E grad
.
Градиент (grad) скалярной
функции – это вектор, направленный в
сторону наиболее быстрого возрастания функции, равный по модулю производной от функции по этому
направлению. Следовательно, напряженность электрического поля
направлена в сторону наиболее
быстрого убывания потенциала.
Единицы измерения потенциала: В (вольт).
Из выражения
dA q(E dl )
следует, что работа по перемещению
заряда вдоль линии напряженности электрического поля
E dl
||
максимальна
dA q E dl . А работа по перемещению заряда перпендикулярно
напряженности электрического поля
E dl
минимальна
dA 0.
Интегрируя выражение
dA q(E dl ) qd