По кольцу радиусом R равномерно распределен заряд q0. Какую работу нужно совершить, чтобы перенести заряд q из центра кольца в точку, расположенную на оси кольца на расстоянии R от его центра?
Зако́н Берну́лли[1] (также уравне́ние Берну́лли[2][3], теоре́ма Берну́лли[4][5] или интегра́л Берну́лли[2][6][7]) устанавливает зависимость между скоростью стационарного потока жидкости и её давлением. Согласно этому закону, если вдоль линии тока давление жидкости возрастает, то скорость течения убывает, и наоборот. Количественное выражение закона в виде интеграла Бернулли является результатом интегрирования уравнений гидродинамики идеальной жидкости[2] (то есть без вязкости и теплопроводности).
ЕленаАлександровна381
15.01.2023
Дано: a=3см/c^2=0,03м/с^2; v1=18км/ч=5м/c; v2=54км/ч=15м/c s-? По условию, оба поезда одинаковый путь, т.е S1=S2; Для первого тела этот путь равен v0t+at^2/2=0,03*t^2/2 Для второго тела этот путь равен v(средняя второго поезда)*t, найдем её: Vср=L/T T=t1+t1 (время на первом участке и время на втором участке); t1=L1/v1=L/2V1; t2=L2/v2=l/2V2; (L1 и L2 - путь на первом и втором участке соответственно); Тогда T=L/2V1+L/2V2=L/2*((V1+V2)/(V1*V2)); Тогда Vср=2(V1*V2)/(V1+V2)=2*5*15/(5+15)=7,5м/c; S1=S2; 0,03t^2/2=7,5t; 0,03t^2=15t; 0,03t=15; t=15/0,03=500с; Оба поезда одинаковый путь, поэтому нам достаточно найти путь одного поезда: s=7,5*500=3750 (м) ответ:s=3750 м
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
По кольцу радиусом R равномерно распределен заряд q0. Какую работу нужно совершить, чтобы перенести заряд q из центра кольца в точку, расположенную на оси кольца на расстоянии R от его центра?
Зако́н Берну́лли[1] (также уравне́ние Берну́лли[2][3], теоре́ма Берну́лли[4][5] или интегра́л Берну́лли[2][6][7]) устанавливает зависимость между скоростью стационарного потока жидкости и её давлением. Согласно этому закону, если вдоль линии тока давление жидкости возрастает, то скорость течения убывает, и наоборот. Количественное выражение закона в виде интеграла Бернулли является результатом интегрирования уравнений гидродинамики идеальной жидкости[2] (то есть без вязкости и теплопроводности).