Объяснение:
Дано:
U=270 B
R2 = 12 Ом
R4 = 22 Ом
R5 = 16 Ом
R6 = 10 Ом
L2 = 14 мГн
L3 = 8 мГн
C1 = 11 мкФ
C3 = 22 мкФ
ν = 50 Гц
_________
1)
Находим активное сопротивление цепи:
R = R2+R4+R5+R6 = 12+22+16+10 = 60 Ом
2)
Находим реактивные сопротивления катушек:
XL = XL2+XL3 = 2π*ν*L2+2π*ν+L3 = 2π*ν*(L2+L3)=
=2*3,14*50*(14+8)*10⁻³ ≈ 69 Ом
3)
Находим реактивное сопротивление емкостей:
Xc = Xc1+Xc3 = 1 / (2π*ν*C1) + 1/(2π*ν*C3) = 1/(2π*ν)*(1/C1+1/C3) =
= 1/(2*3,14*50) * (1/11*10⁻⁶+1/22*10⁻6) ≈ 1/(2*3,14*50)*(1/11e-6+1/22e-6)≈434 Ом
4)
Находим общее сопротивление цепи:
Z = √ (R²+ (Xc-XL)²) = √ (60² + (434-69)²) ≈ 670 Ом
5)
Находим общий ток:
I = U / Z = 270 / 670 ≈ 0,4 А
6)
Находим активную мощность:
P =I²*R = 0,4²*60 = 9,6 Вт
7)
Ну а теперь последовательно находим напряжения на элементах цепи:
Резисторы:
U2 = I*R2 = 0,4*12 = 4,8 B
U4 = I*R4 = 0,4*22 = 8,8 B
U5 = I*R5 = 0,4*16 = 6,4 B
U6 = I*R6 = 0,4*10 = 4,0 B
На катушках:
UXL2 = 2*π*ν*L2*I = 2*3,14*50*14*10⁻³ *0,4 ≈ 1,8 B
Аналогично на XL3 (рассчитать самостоятельно!)
Напряжение на конденсаторах:
UXc1 = I*(1/(2π*ν*C) = 0,4*1/(2*3,14*50*11*10⁻⁶) ≈ 116 В
(Аналогично на другом конденсаторе рассчитать самостоятельно)
Электрическая схема:
Поделитесь своими знаниями, ответьте на вопрос:
Определить силу тока в цепи, состоящей из последовательно соединенных активного сопротивления 220 Ом, конденсатора емкостью 100 мкФ, катушки индуктивностью 101, 32 мГн. Напряжение сети 220 В
т.к частота сети не оговорена, расчитаем цепь для случая 50 Гц.
1. Ёмкостное сопротивление
Xc=1÷(2÷пи×f×C)= 1÷(2×3,14×50×(100×10-6))=31,85 Ом
2. Индуктивное сопротивление
Xl=2×пи×f×L= 2×3,14×50×(101,32×10-3)=31,82 Ом
3. Общее сопротивление
Ro= R+Xc+Xl= 220+31,85+31,82=284,67 Ом
4. Сила тока
I=U÷R= 220÷284,67=0,773 А = 773 мА