Itina321t
?>

Санки скатываются с ледяной горы высотой 16м и выезжают в пушистый снег. При скатывании по льду выделилось 160Дж тепла. Какое количество тепла выделилось при торможении о снег до конца остановки? Масса санок 5кг. С объяснением

Физика

Ответы

egoryandiana3727283

При торможении до конца остановки

выделилось Q(2)=624Дж теплоты.

Объяснение:

h=16м

m=5кг

g=9,8н/кг

Q(1)=160Дж

V(конеч.) =0

Q(2)=?

Санки находятся на вершине горы.

Если за нулевой уровень считать

ее подножие, то потенциальная

энергия санок на вершине:

Е(пот.)=mgh

E(пот.)=5кг×9,8кг×16м=784Дж

В этот момент санки неподвижны,

поэтому не имеют кинетической

энергии. Во время спуска по склону

часть потенциальной энергии пере

ходит в кинетическую (санки разго

няются), а другая ее часть уходит на

нагревание льда (преодоление си

лы трения между полозьями и повер

хностью льда).

Е(пот.)=Е(кин.)+Q(1)

После завершения спуска кинети

ческая энергия санок максимальна,

а потенциальная энергия равна 0

(достигнут нулевой уровень). После

спуска движение происходит по го

ризонтальной поверхности до пол

ной остановки. Вся кинетическая

энергия санок затрачивается (в ре

зультате действия сил трения) на

нагревание пушистого снега:

Q(2)=E(кин.)=Е(пот.)-Q(1)

Q(2)=784Дж-160Дж=624Дж

ответ: 624Дж.

fafina12586
Если резко ударить мотком по лежащей на полу доске – то она подскочит. Это произойдет потому, что молоток передаст доске импульс, с которым она частично упруго провзаимодействует с полом и отскочит. Примерно такие же события здесь будут происходить между клином и горизонтальной поверхностью. Клин либо отскочит, если он провзаимодействует с поверхностью упруго, либо он просто потеряет энергию вертикального импульса при неупругом взаимодействии с горизонтальной поверхностью. А поэтому было бы ошибкой учесть только горизонтальную скорость клина в энергетическом уравнении.

Ещё раз, как именно клин после удара будет взаимодействовать с горизонтальной поверхностью – мы не знаем (будет скакать или просто будет двигаться горизонтально), поскольку нам не заданы параметры взаимодействия клина и поверхности (абсолютно-упругое, абсолютно-неупругое и т.п.), но в любом случае, нам необходимо учесть часть кинетической энергии, которую будет нести вертикальный (!) импульс клина.

Что бы развеять сомнения, добавлю, что, поскольку мы считаем удар мгновенным, то в тот момент, когда шар УЖЕ оторвётся от верхней поверхности – нижняя поверхность клина ЕЩЁ «не будет» знать, что клин уже движется вниз, поскольку сигнал (в виде упругой волны) о верхнем взаимодействии ещё не дойдёт до дна.

Шар взаимодействует с клином точно поперёк их общей поверхности в момент контакта. А поверхность эта сориентирована к горизонту под углом 30°. Стало быть, сила, действующая на клин – будет придавать вертикальный импульс и скорость в √3 раза больший, чем горизонтальный импульс и скорость.

Обозначим горизонтальную скорость клина, как – u, тогда его вертикальная скорость √3u .

Будем считать, что скорость шара после отскока направлена вбок и ВВРЕХ. Именно из этих соображений далее будем записывать законы сохранения (если получится отрицательное значение скорости, то значит, она направлена – вниз). Обозначим горизонтальную составляющую конечной скорости шара, как vx, а вертикальную, как vy.

Из закона сохранения импульса по горизонтали ясно, что:

mvx = Mu ;

vx = [M/m] u ;

Из закона сохранения импульса по вертикальной оси найдём vy:

mV = M√3u – mvy ;

vy = √3[M/m]u – V ;

Из закона сохранения энергии найдём горизонтальную скорость клина:

mV² = mvx² + mvy² + Mu² + M (√3u)² ;

mV² = [M²/m] u² + m ( √3[M/m]u – V )² + 4Mu² ;

mV² = [M²/m]u² + 3[M²/m]u² – 2√3MuV + mV² + 4Mu² ;

0 = 4[M²/m]u² – 2√3MuV + 4Mu² ;

√3V = 2( [M/m] + 1 ) u ;

u = √3V/[2(1+M/m)] ;

Потеря энергии: Eпот = M (√3u)²/2 = 9MV²/[8(1+M/m)²] =
= 9m²V²/[8M(1+m/M)²] = mV²/2 * 9m/[4M(1+m/M)²] ;

Eпот = Eнач * 9m/[4M(1+m/M)²]
где Eнач – начальная кинетическая энергия.

При m << M    :   Eпот —> 0 ;     (проверка очевидного предельного перехода)

vx = [M/m] u = [M/m] √3V/[2( [M/m] + 1 )] ;

vx = √3V/[2(1+m/M)] ;

vy = √3[M/m]u – V = √3[M/m] √3V/[2( [M/m] + 1 )] – V =
= 3V/[2+2m/M] – V = [3V–2V–2Vm/M]/[2+2m/M] ;

vy = V[1–2m/M]/[2(1+m/M)] ;

Тангенс угла отскока:

tgφ = vy/vx = [1–2m/M]/√3 ;
в частности, при M = 2m  шарик отскочит горизонтально.

При m << M    :   tgφ —> 1/√3    ;    φ —> 30°
(проверка очевидного предельного перехода)

ОТВЕТ: u = √3V/[2(1+M/m)] .
chizhenkovd9
Если резко ударить мотком по лежащей на полу доске – то она подскочит. Это произойдет потому, что молоток передаст доске импульс, с которым она частично упруго провзаимодействует с полом и отскочит. Примерно такие же события здесь будут происходить между клином и горизонтальной поверхностью. Клин либо отскочит, если он провзаимодействует с поверхностью упруго, либо он просто потеряет энергию вертикального импульса при неупругом взаимодействии с горизонтальной поверхностью. А поэтому было бы ошибкой учесть только горизонтальную скорость клина в энергетическом уравнении.

Ещё раз, как именно клин после соударения с шаром будет взаимодействовать с горизонтальной поверхностью – мы не знаем (будет скакать или просто будет двигаться горизонтально), поскольку нам не заданы параметры взаимодействия клина и поверхности (абсолютно-упругое, абсолютно-неупругое и т.п.), но в любом случае, нам необходимо учесть часть кинетической энергии, которую будет нести вертикальный (!) импульс клина.

Что бы развеять сомнения, добавлю, что, поскольку мы считаем удар мгновенным, то в тот момент, когда шар УЖЕ оторвётся от верхней поверхности – нижняя поверхность клина ЕЩЁ «не будет знать», что клин уже движется вниз, поскольку сигнал (в виде упругой волны) о верхнем взаимодействии ещё не дойдёт до дна.

Шар взаимодействует с клином точно поперёк их общей поверхности в момент контакта. А поверхность эта сориентирована к горизонту под углом    \alpha = 30^o .    Стало быть, сила, действующая на клин – будет придавать вертикальный импульс и скорость в    ctg{ \alpha }    раз больший, чем горизонтальный импульс и скорость.

Обозначим горизонтальную скорость клина, как –    V ,    тогда его вертикальная скорость    Vctg{ \alpha } .

Будем считать, что скорость шара после отскока направлена вбок и ВВРЕХ. Именно из этих соображений далее будем записывать законы сохранения (если получится отрицательное значение скорости, то значит, она направлена – вниз). Обозначим горизонтальную составляющую конечной скорости шара, как    v ,    а вертикальную, как    v_y .

Из закона сохранения импульса по горизонтали ясно, что:

mv = MV ;

v = \frac{M}{m} V ;

Из закона сохранения импульса по вертикальной оси найдём    v_y :

m v_o = MV ctg{ \alpha } - mv_y ,

v_y = \frac{M}{m} V ctg{ \alpha } - v_o ;

Из закона сохранения энергии найдём горизонтальную скорость клина:

mv_o^2 = mv^2 + mv_y^2 + MV^2 + M (Vctg{ \alpha })^2 ;

mv_o^2 = \frac{M^2}{m} V^2 + m ( \frac{M}{m} V ctg{ \alpha } - v_o )^2 + \frac{MV^2}{ \sin^2{ \alpha } } ;

mv_o^2 = \frac{M^2}{m} V^2 + \frac{M^2}{m}V^2 ctg^2{ \alpha } - 2MVv_o ctg{ \alpha } + mv_o^2 + \frac{MV^2}{ \sin^2{ \alpha } } ;

0 = \frac{M^2 V^2}{m \sin^2{ \alpha } } - \frac{2MVv_o}{ tg{ \alpha } } + \frac{MV^2}{ \sin^2{ \alpha } } ;

2 v_o \sin{ \alpha } \cos{ \alpha } = ( 1 + \frac{M}{m} ) V ;

V = v_o \frac{ \sin{ 2 \alpha } }{1+M/m} ;

Для угла    \alpha = 30^o :

V = \frac{ \sqrt{3} \ v_o }{2(1+M/m)} ;

В частности, при    m = M : \ \ \ V = v_o \frac{ \sin{ 2 \alpha } }{2} ;

В частности, при    m M : \ \ \ V = v_o \sin{ 2 \alpha } ;

Часть энергии не превратится ни в движение клина вдоль плоскости, ни в движение шара, а уйдёт вместе с вертикальным импульсом клина либо в колебания клина над поверхностью, либо во внутреннюю энергию (при неупругом взаимодействии клина с поверхностью). Что бы там с этой энергией далее не происходило – необходимо учесть эту энергию отдельно, чтобы не отнести её по ошибке к энергии горизонтального движения клина. После пояснения термина – «потеря энергии» в контексте данной задачи, можно эту потерю и посчитать.

Потеря энергии:    E_{lost} = \frac{M}{2} ( V ctg{ \alpha } )^2 = 2M ( \frac{ v_o \cos^2{ \alpha } }{1+M/m} )^2 ;

E_{lost} = \frac{ m v_o^2 }{2} \cdot \frac{4m}{M} (\frac{ cos^2{ \alpha } }{1+m/M} )^2 ;

E_{lost} = \frac{4m}{M} (\frac{ cos^2{ \alpha } }{1+m/M} )^2 E_o = \frac{4M}{m} (\frac{ cos^2{ \alpha } }{1+M/m} )^2 E_o ;

где    E_o    – начальная кинетическая энергия.

Для угла    \alpha = 30^o :

E_{lost} = \frac{9m}{4M(1+m/M)^2} E_o = \frac{9M}{4m(1+M/m)^2} E_o ;

При    m
(проверка очевидного предельного перехода)

При    m = M \ \ \ : \ \ \ E_{lost} = \frac{9}{16} E_o ;

При    m M \ \ \ : \ \ \ E_{lost} \to 0 ;
На гладкой горизонтальной поверхности покоится клин массой m. на грань, составляющей угол 30 градусо
На гладкой горизонтальной поверхности покоится клин массой m. на грань, составляющей угол 30 градусо
На гладкой горизонтальной поверхности покоится клин массой m. на грань, составляющей угол 30 градусо
На гладкой горизонтальной поверхности покоится клин массой m. на грань, составляющей угол 30 градусо
На гладкой горизонтальной поверхности покоится клин массой m. на грань, составляющей угол 30 градусо

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Санки скатываются с ледяной горы высотой 16м и выезжают в пушистый снег. При скатывании по льду выделилось 160Дж тепла. Какое количество тепла выделилось при торможении о снег до конца остановки? Масса санок 5кг. С объяснением
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

oleonov
Adabir20156806
sbn07373
igorshevkun
mskatrinmadness
lestnica
vapebroshop
knigi21212
Vladimirovich351
Яна_Софья
cheshirsky-kot
Бегун-Марина
Алена-Петрова285
dedald
alexandrxzx09