Валентинович133
?>

Дана окружность с диаметрами ab и cd. докажите, что четырехугольник abcd является прямоугольником

Геометрия

Ответы

stendpost
Ab = cd как диаметры если о - центр окружности,то ао = ов = ос = od как радиусы. ав и cd - диагонали четырехугольника abcd. если в четырехугольнике диагонали точкой пересечения делятся пополам, то это параллелограмм. если в параллелограмме диагонали равны, то это прямоугольник. значит abcd - прямоугольник.
familumid
Решение: 1) cd = 4 см ad = 4 см. значит, ad = cd => ∆cda - равнобедренный. тогда ∠cad = ∠adc = (180° - 90°)/2 = 45°. по теореме о сумме углов треугольника: ∠в = 180° - ∠с - ∠а = 180° - 90° - 45° = 45°. 2) по теореме пифагора: ас = √ad² + cd² = √4² + (4√3)² = √64 = 8 см. cd = 4 см ac = 8 см значит, cd = 1/2ac => ∠a = 30°, т.к. напротив угла в 30° лежит катет, равный половине гипотенузе. по теореме о суиик углов треугольника: ∠в = 180° - ∠с - ∠а = 180° - 90° - 30° = 60°. ответ: 1) 45°, 45°; 2) 30°; 60°.
vrn3314

Биссектриса равностороннего треугольника является медианой и высотой. Обозначим сторону треугольника буквой х.

Биссектриса равностороннего треугольника разбивает его на два равных прямоугольных треугольника, гипотенуза треугольника равна х, биссектриса является одним катетом, длина второго катета равна х/2.

По теореме Пифагора: х² = (x/2)² + (12√3)².

х² = x²/4 + 144 * 3.

х² - x²/4 = 432.

(4х²)/4 - x²/4 = 432.

(3х²)/4 = 432.

3х² = 432 * 4;

3х² = 1728;

х² = 1728/3 = 576.

х = √576 = 24.

ответ: сторона треугольника равна 24.

Объяснение:

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Дана окружность с диаметрами ab и cd. докажите, что четырехугольник abcd является прямоугольником
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

inessa12006
DodokhodzhaevVladimirovich
volna22051964
Владислав-Александр32
bolosolo77
lilit-yan
baranovaas
jakushkinn
Belov
Олеся
kirill81
dmtr77
purbuevat56524
Artak96993298
Никита