ВD - биссектриса угла АВС по св-ву диагоналей ромба ⇒ ∠АВD=∠DВС; назовём биссектрису угла АВD - ВК; тогда ∠АВК (или ∠КВD) = 1/2 ∠DВС (или ∠АВD); пусть ∠КВD=х°, тогда ∠DВС=2х°;
ромб - это параллелограмм с равными сторонами, поэтому для него работают все св-ва параллелограмма; ВС и АD - параллельные стороны, сумма углов DКВ и КВС = 180°, как односторонних;
х+2х+120=180
3х=60
х=20
Значит, ∠КВD=20°, ∠АВD=2*20=40°, ∠АВС=40*2=80°; ∠АВС=∠АDС по св-ву ромба; сумма ∠АВС+ВАD=180°; значит, ∠ВАD=180-80=100°; ∠ВАD=∠АСD по св-ву ромба.
Поделитесь своими знаниями, ответьте на вопрос:
Втреугольнике abc угол с = 90 градусов, ав=26, cosa 12/13. найдите bc
∠АВН = 30°; ∠ВАР = 45°.
Пошаговое объяснение:
Концы отрезка, длина которого 16 см, принадлежат двум взаимно перпендикулярным плоскостям. Расстояние от концов отрезка до линии пересечения плоскостей равны 8 см и 8√2 см. найти углы, которые образует отрезок со своими проекциями на данные плоскости.
Решение.
Даны две взаимно перпендикулярные плоскости α и β.
Пусть отрезок АВ = 16 см. Расстояние от точки А, принадлежащей плоскости α, до линии пересечения плоскостей - это перпендикуляр АН, а расстояние от точки В, принадлежащей плоскости β, до линии пересечения плоскостей - это перпендикуляр ВР. Соответственно, ВН - проекция отрезка АВ на плоскость β, а АР - проекция отрезка АВ на плоскость α.
Следовательно, надо найти углы АВН и ВАР.
Отметим, что АН⊥НВ, а ВР⊥АР, так как АН⊥β, а ВР⊥α соответственно по построению.
В прямоугольном треугольнике АВН:
Sin(∠АВН) = АН/АВ =8/16 = 1/2. => ∠АВН = 30°
В прямоугольном треугольнике АРВ:
Sin(∠ВАР) = ВР/АВ =8√2/16 = √2/2. => ∠ВАР = 45°.