Объяснение:
7. В треугольниках △ABD и △CBD DC=AD, AB=BC по условию, BD - общая сторона, значит △ABD=△CBD по 3му признаку. => <ABD=<CBD
8. В треугольниках △ABC и △ADC <BAC=<CAD, <BCA=<DCA по условию, АС - общая сторона, значит △ABC=△ADC по 2му признаку. => AD=AB=9cм, CD=BC=3см, АС (общая) =10см.
Р(ADC)=AD+CD+AC=9+3+10=22см
9. <OCN=<ONC => △CON - равнобедренный и тогда OC=ON.
Тогда в треугольниках △DCO и △DNO СD=DN по условию, OC=ON по доказанному выше, OD - общая сторона => △DCO=△DNO по 3му признаку.
Поделитесь своими знаниями, ответьте на вопрос:
На рисунке ab=6, ac=3, ae=4, тогда ad=12, ak=8. верно или нет, если можно пояснить.
ответ:Оба треугольника равнобедренные,т к АС=DB и точка О делит их пополам,т е
АО=О-В;DO=OC
Углы при основании равнобедренных треугольников равны между собой
<D=<C=60 градусов
Угол при вершине равен
<DOC=180-60•2=60 градусов
Как оказалось,все углы треугольника DOC равны по 60 градусов,значит треугольник даже не равнобедренный,а равносторонний
Треугольники DOC и АОВ равны между собой по первому признаку равенства треугольников
АО=ОС;ОB =ОD; по условию задачи
<DOC=<AOB,как вертикальные
Равенство треугольников доказано,поэтому все углы треугольника АОВ равны по 60 градусов
<ВАО=60 градусов
Объяснение: