Объяснение:
1) Через любую точку можно провести прямую, параллельную другой прямой, но при этом только одну. Данная тема называется параллельность прямых и плоскостей в Две плоскости называются параллельными, если они не пересекаются, то есть не имеют общих точек
3) 1°. Если две параллельные плоскости пересечены третьей, то линии их пересечения параллельны.2°. Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны
4) Признак параллельности прямой и плоскости:
Если прямая, не лежащая в плоскости, параллельна какой-либо прямой, лежащей в плоскости, то эта прямая параллельна и самой плоскости.
1. Проведем произвольную прямую b, лежащую в плоскости α.
2. Через прямую b и точку М проведем плоскость β.
3. В плоскости β через точку М проведем прямую а, параллельную прямой b.
Прямая а будет параллельна плоскости α по признаку параллельности прямой и плоскости.
AM = 6 см; MB = 8 см.
Объяснение:
Известен такой факт: при пересечении двух хорд образуется точка, которая делит хорды таким образом, что произведение отрезков одной хорды равно произведению отрезков другой. То есть в данном случае AM * MB = CM * MD (1). Также имеем второе уравнение CD = CM + MD = 16 см => MD = 16 см - 4 см = 12 см. Т.к. AM/MB = 3/4 => AM = 3/4*MB (2). Подставим все, что известно в (1), используя (2):
3/4*MB*MB = 3/4*MB² = 4 * 12 => MB = √(4/3*4*12) = 8 см.
Далее из (2) найдем AM:
AM = 3/4*8 = 6 см.
Проверка:
AM*MB = 6*8 = 48; CM*MD = 4*12 = 48. То есть AM*MB = CM*MD. Решение найдено верно.
Поделитесь своими знаниями, ответьте на вопрос:
Стороны параллелограмма равны 10 и 6 см, а угол между ними равен 150 градусам, найти площадь параллелограмма