2числа нашла 1)628750=шепнул 2)682750= шепнул ответ: 1) 3143750=крикнул 2)3413750=крикнул решение можно так попробовать: 1. л=0 или 5 т.к. сумма других пяти одинаковых слагаемых (цифр) не будет оканчиваться на ту же цифру 2. а) если л=0 , то у=5 (так же как 1 пункт) б) если л=5, то у*5=у+1 такого быть не может итак, в конце 50 (если при умножениипоследних двух букв получаются те же буквы,то это по любому 50) 3. н не может равняться 1 , т.к. 5 занята буква у, значит н=7 (7*5 +2 = последняя цифра 7) далее к не может быть меньше 3 ( это расскажешь) , а т.к. тройка была в уме , то к ровно 3 4. дальше понятно ш=6 ( иначе ответ не с 3 будет начинаться) 5 к=3 ,то п*5 должно оканчиваться на 0 => р=8 или 2
katdavidova91
14.03.2020
1) ас=13 , вd=39 , aa1=12 sinaca1=12/13 =sinbdb1 bb1=bd*sinbdb1=39*(12/13)=36 2) a) проведём се⊥ав и de⊥ab. ае=ве=1/2*ав=1/2*16=8 , т.к. авс - равнобедренный, е - середина ав. de - тоже высота , медиана и биссектриса, т.к. авd - равнобедренный, ad=bd. се²=ас²-ае²=17²-8²=225 , се=15 ∠adb=90° по условию, ∠bde=45° ⇒ ∠dbe=45° ⇒ δbde - равнобедренный, de=be=8 . δcde: ce⊥ab и de⊥ab ⇒ ∠ced=60° , cd²=ce²+de²-2*ce*de*cos60°=15²+8²-2*15*8*0,5=169 cd=13 б) ∠сd=180°-60°=120° ⇒ cd²=15²+8²-2*15*8*cos120°=15²+8²+2*15*8*0,5=409 cd=√409 ответ: 13 или √409.
Elen-ti81459
14.03.2020
Δавс, м является ав, см = mb. мк - луч, мк - биссектриса ∟amc. довести мк ‖ св. доведения ". по условию мк - биссектриса ∟amc. по определению биссектрисы треугольника имеем: ∟amk = ∟kmc = 1 / 2∟amc. пусть ∟amk = ∟kmc = х, тогда ∟amc = 2х. ∟amc i ∟cmb - смежные. по теореме о смежных углы имеем: ∟cmb = 180 ° - 2х. по условию см = mb. итак, δсмв - равнобедренный. по свойству углов равнобедренного треугольника имеем: ∟mcb = ∟mbc = (180 ° - (180 ° - 2х)): 2 = = (180 ° - 180 ° + 2х) 2 = (2х): 2 = х. итак, ∟amk = ∟mbc - х. ∟amk i ∟mbc - соответствующие. поэтому по признаку параллельности прямых имеем мк ‖ вс, ав - сек.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Прямая cn перпендикулярна к плоскости квадрата abcd. найдите расстояние от точки n до прямой bd, если cn=8 см, ab=6√2 см