Сторона основания правильной четырехугольной равна 12см. диагональ призмы наклонена к плоскости основания под углом 45°. найдите площадь поверхности призмы.
Поскольку ∠BCD = 100° опирается на дугу ВАD, то ∪ ВАD = 200°
В Δ АВС АВ = ВС, ∠АВС = 140°, тогда ∠ВАС = ∠ВСА = 0,5(180° - 140°) = 20°
Поскольку ∠ВАС = 20° опирается на дугу ВС, то ∪ ВС = 40°
Поскольку ∠ВСА = 20° опирается на дугу АВ, то ∪ АВ = 40°
∪ AD = ∪ BAD - ∪ AB = 200° - 40° = 160°
∪ CD = ∪ ADC - ∪ AD = 280° - 160° = 120°
ГазалиеваКозак
20.05.2022
Площадь трапеции равна произведению полусуммы оснований на высоту.на чертеже трапеции опустите высоту из угла в на основание ад - получите прямоугольный треугольник с углом при точке в, образованным стороной ав и высотой, в 60 градусов и противолежащим высоте углом в 30 градусов.высота определится из этого полученного прямоугольного треугольника, как катет прямоугольного треугольника, лежащий против угла в 30 градусов, который равен половине гипотенузы, то есть стороны ав: h = ab/2 = 6 (см).площадь: s = h(ад + вд)/2 = 132 (см2).
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Сторона основания правильной четырехугольной равна 12см. диагональ призмы наклонена к плоскости основания под углом 45°. найдите площадь поверхности призмы.
∪ AB = 40°; ∪ BC = 40°; ∪ CD = 120°; ∪ AD = 160°;
Объяснение:
Поскольку ∠АВС = 140° опирается на дугу ADC, то ∪ АDС = 280°
Так как около данного четырёхугольника можно описать окружность, то сумма противоположных углов четырёхугольника равна 180°, поэтому
∠ВСD + ∠BAD = 180° и ∠BCD = 180° - ∠BAD = 180° - 80° = 100°
Поскольку ∠BCD = 100° опирается на дугу ВАD, то ∪ ВАD = 200°
В Δ АВС АВ = ВС, ∠АВС = 140°, тогда ∠ВАС = ∠ВСА = 0,5(180° - 140°) = 20°
Поскольку ∠ВАС = 20° опирается на дугу ВС, то ∪ ВС = 40°
Поскольку ∠ВСА = 20° опирается на дугу АВ, то ∪ АВ = 40°
∪ AD = ∪ BAD - ∪ AB = 200° - 40° = 160°
∪ CD = ∪ ADC - ∪ AD = 280° - 160° = 120°