1) 780 см²(развëрнутый ответ на картинке)
2) Дано:
трап. ABCD
AD и BC основания
AD=24 см
BC=16 см
угол D=90
угол A=45
Найти:
S(abcd)-?
Проведем высоту BH.
Так как трап. прямоугольная то AH=AD-BC=24-16=8 см
Рассм. тр. ABH - по усл. угол A=45, угол H = 90 - BH высота, то угол B = 45, отюда тр. равнобедренный, а занчит AH=BH=8 см
S=1/2*(a+b)*h
S=1/2*(16+24)*8=1/2*40*8=20*8=160 см²
ответ. площадь трапеции равна 160 см²
3) h -высота
АС=а - основание под высотой h
AC=AK+KC=6+9=15 см
AC=a=15
AВ=b=13
ВC=c=14
периметр Р=a+b+c=15+13+14=42
полупериметр р=Р/2=42/2=21
по формуле Герона площадь треугольника АВС
S=√ (p*(p-a)(p-b)(p-c))
S=√ (21*(21-15)(21-13)(21-14))=84
другая формула для расчета площади треугольника АВС
S=1/2*h*a
h=2S/a=2*84/15=11.2
площадь треугольника ABK
S(АВК)=1/2*h*AK=1/2*11.2*6=33.6 см2
площадь треугольника CBK
S(СВК)=1/2*h*KC=1/2*11.2*9=50.4 см2
проверка 33.6 +50.4 =84
ОТВЕТ S(АВК) =33.6 см2 ; S(СВК) =50.4 см2
(Чертёж на картинке)Поделитесь своими знаниями, ответьте на вопрос:
Точки а(-3; 5), в(5; 7) и (7; -1) являются вершинами параллелограмма. найдите его четвертую вершину
А) нет, т. к. если одна из параллельных прямых пересекает плоскость, то и вторая прямая пересечёт эту плоскость.
б) могут.
Пусть в плоскости ą лежит прямая с||а, b пересекает плоскость ą в точке, принадлежащей прямой с. Тогда, если прямая пересекает одну из двух параллельных прямых, то она пересечёт и вторую.
в) могут. Т. к. а||плоскости альфа, то существует плоскость ß, в которой лежит а. если одна из 2 прямых лежит в некоторой плоскости (в данном случае прямая а), а другая прямая (прямая b) пересекает эту плоскость в точке, не лежащей на первой прямой, то эти прямые скрещивающиеся.