Для краткости записи я ввожу обозначения bd = h; ae = h; ec = x; ρ = 5; r = 6; b = ab = bc; a = ad; (соответственно, основание ac = 2*a); z = a/b; для треугольника abd 2*ρ = h + a - b; для треугольника aec 2*r = h + x - 2*a; эти треугольники подобны - у них равные углы, ec/ac = ad/ab; то есть x/(2*a) = a/b = z; x = 2*a*z; 2*r = h + 2*a*z - 2*a; площадь abc можно записать как h*(2*a)/2; а можно, как h*b/2; h*(2*a)/2 = h*b/2; h = 2*h*z; 2*r = 2*h*z + 2*a*z - 2*a = 2*z*(h + a - a/z) = 2*z*(a + h - b) = 4*z*ρ; z = r/(2*ρ); (примечание. на самом деле, из подобия abd и aec это соотношение следует сразу, поскольку радиусы вписанных окружностей относятся так же, как стороны, то есть r/ ρ = 2*a/b) из формулы для площади abc s = p*r; где p = a + b; - полупериметр abc, r - искомый радиус вписанной окружности, h*a = (a + b)*r; r = h*a/(a + b) = h*z/(1 + z); то есть надо найти h; на самом деле уже решена, но сами вычисления можно сделать простыми. поскольку z = 3/5; то - если ввести неизвестный (пока что) параметр t, то a = 3*t; b = 5*t; откуда по теореме пифагора h = 4*t (собственно, давно понятно, что получился "египетский" треугольник, подобный 3,4,5) ρ = (a + h - b)/2 = t*(3 + 4 - 5)/2 = t = 5; то есть h = 20; r = 20*(3/5)/(1 + 3/5) = 15/2;
Polina780
03.12.2022
При пересечении двух прямых образуются 4 угла, причем 2 раза по 2 вертикальных угла. или по 2 смежных угла с каждой стороны прямой. сумма смежных углов с одной стороны прямой = 180 гр, то для решения значение 296 гр нам не подходит, как сумма двух смежных углов. поэтому 296 гр - это сумма 2-х вертикальных углов. вертикальные углы равны между собой. сумма всех 4 углов при пересечении двух прямых составляет 360 градусов. 360 - 296 = 64(гр) - сумма двух других вертикальных углов. 296 : 2 = 148(гр) - это мера каждого угла из двух первых вертикальных углов. 64 : 2 = 32(гр) - это мера каждого угла из двух вторых вертикальных углов. ответ: 148гр.,148 гр., 32гр.,32гр.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Шар радиуса 10 см вписан в цилиндр. вычислите: 1)периметр осевого сечения цилиндра; 2)объем цилиндра.